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Fundamental Limits and Tradeoffs on Disturbance
Propagation in Linear Dynamical Networks

Milad Siami and Nader Motee

Abstract—We investigate performance deterioration in linear
consensus networks subject to external stochastic disturbances.
The expected value of the steady state dispersion of the states of
the network is adopted as a performance measure. We develop
a graph-theoretic methodology to relate structural specifications
of the coupling graph of a linear consensus network to its per-
formance measure. We explicitly quantify several inherent fun-
damental limits on the best achievable levels of performance and
show that these limits of performance are emerged only due to
the specific interconnection topology of the coupling graphs. Fur-
thermore, we discover some of the inherent fundamental tradeoffs
between notions of sparsity and performance in linear consensus
networks.

Index Terms—Fundamental limits, linear consensus networks,
network analysis and control, performance measures, sparsity
measures.

I. INTRODUCTION

The issue of fundamental limits and their tradeoffs in large-scale
interconnected dynamical systems design lies at the very core of theory
of distributed feedback control systems as it reveals what is achievable,
and conversely what is not achievable by distributed feedback control
laws. Improving global performance as well as robustness to exoge-
nous disturbances in dynamical networks are critical for sustainability
and energy efficiency in engineered infrastructures; examples include
formation control of a group of autonomous vehicles, distributed
emergency response systems, interconnected transportation networks,
energy and power networks, metabolic pathways, and sociotechnical
networks [1]–[8]. One of the outstanding analysis problems in the
context of dynamical networks is to investigate and characterize their
intrinsic fundamental limits and tradeoffs on global performance.
Providing solutions to this important challenge will enable us to de-
velop underpinning principles to design efficient-by-design dynamical
networks.

In this paper, we are particularly interested in the class of first-order
linear consensus networks that are driven by exogenous stochastic
disturbance inputs. We quantify inherent fundamental limits on the
best achievable levels of performance in such networks and show
how the performance of a network in this class depends on the
topology of the coupling graph. The topology of the coupling graph
of a consensus network depends on the coupling structure among the
subsystems, which are usually imposed by governing physical laws
and/or global objectives. We consider linear consensus networks that
are operating in closed-loop, i.e., networks that have been already
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controlled by a linear state feedback control law. In some applications
such as formation control of autonomous vehicles, sparsity pattern of
the underlying information structure in the controller array determines
communication requirements among the vehicles, and as a result, it
defines the sparsity pattern of the topology of the coupling graph of
the closed-loop network.

In Section III, the steady state variance of the output of a noisy
consensus network is adopted as a performance measure to quantify
performance deterioration of the network. This performance measure
is equal to the square of the H2-norm of the network from the dis-
turbance input to the output [4]. Our first contribution shows that how
the performance measure scales with the network size. For consensus
networks with unweighted coupling graphs, it is shown in Section IV
that the performance measure isΩ(n) for networks with “fairly” sparse
interconnection topologies such as tree and unicyclic graphs,1 where n
is the network size. The performance measure scales in order of Ω(1)
for networks with “fairly” dense graphs such as complete bipartite and
complete graphs. In the worst case, the performance measure scales
in order of O(n2), where networks with path-like graphs experience
the worst levels of performance. Our second contribution is to reveal
the importance of the graph topology in emergence of fundamental
limits on the best achievable values for the performance measure.
In Section IV, we prove that by subsuming more detailed graph
specifications in our calculations one can obtain tighter lower bounds
for the best achievable values of the performance measure. In order
to verify meaningfulness of our theoretical results, we performed
extensive simulations and the results assert that our theoretical lower
bounds are tighter for networks with rather dense coupling graphs (see
Figs. 4–6 for more details). The impacts of the presented fundamental
limits usually appear as intrinsic interplays between the performance
measure and various sparsity measures in linear consensus networks.
In our third contribution that is discussed in Section V, we formulate
several uncertainty-principle-like inequalities that assert that networks
with more sparse coupling graphs incur poorer levels of performance.

II. MATHEMATICAL NOTATIONS

Matrix Theory: The set of all nonnegative real numbers is denoted
by R+. The n× 1 vector of all ones is denoted by 1n, the n× n
identity matrix by In, the m× n zero matrix by 0m×n , and the
n× n matrix of all ones by Jn. We will eliminate subindices of
these matrices whenever the corresponding dimensions are clear from
the context. The centering matrix of size n is defined by Mn :=
In − (1/n)Jn. The transposition of matrix A is denoted by AT and
the Moore-Penrose pseudo-inverse of matrix A by A†. For a square
matrix A, Tr(A) refers to the summation of on-diagonal elements of
A. The following definitions are from [10].

1We employ the big omega notation in order to generalize the concept of
asymptotic lower bound in the same way as O generalizes the concept of
asymptotic upper bound. We adopt the following definition according to [9]:

f(n) = Ω (g(n)) ⇔ g(n) = O (f(n)) (1)

where O represents the big O notation. On the left-hand side of (1), the Ω
notation implies that f(n) grows at least of the order of g(n).
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Definition 1: For every x ∈ Rn
+, let us define x↓ to be a vector

whose elements are a permuted version of elements of x in descending
order. We say that x majorizes y, which is denoted by x � y, if and only
if 1Tx = 1Ty and

∑k
i=1 x

↓
i ≥

∑k
i=1 y

↓
i for all k = 1, . . . , n− 1.

The vector majorization is not a partial ordering. This is because
from relations x � y and y � x one can only conclude that the entries
of these two vectors are equal, but possibly with different orders.
Therefore, relations x � y and y � x do not imply x = y.

Definition 2: The real-valued function F : Rn
+ → R is called Schur-

convex if F (x) ≥ F (y) for every two vectors x and y with property
x � y.

Graph Theory: Throughout this paper, we assume that all graphs
are finite, simple, and undirected. A weighted graph G is represented
by a triple G = (VG, EG , wG), where VG is the set of nodes, EG ⊆
{{i, j}|i, j ∈ VG , i �= j} is the set of edges, and wG : EG → R+ is
the weight function. An unweighted graph G is a graph with constant
weight function wG(e) ≡ 1 for all e ∈ EG . For each i ∈ VG , the degree
of node i is defined by di :=

∑
e={i,j}∈EG

wG(e). The sum of all edge
weights in graph G is denoted by W (G). The adjacency matrix AG =
[aij ] of graph G is defined by setting aij = wG(e) if e = {i, j} ∈ EG ,
otherwise aij = 0. The Laplacian matrix of G is defined by LG :=
DG −AG , where DG = diag(d1, . . . , dn) is a diagonal matrix. The
eigenvalues of a Laplacian matrix LG are indexed in ascending order
0 = λ1 ≤ λ2 ≤ · · · ≤ λn. If G is connected, then λ2 > 0. The class of
all connected unweighted graphs with n nodes is denoted by Gn and
GW

n represents the set of all connected weighted graphs with n nodes.
The centering graph is a complete graph with Laplacian matrix Mn

and is denoted by Mn.
For comparison purposes throughout the paper, we consider some

of the standard graphs such as complete graph Kn, star graph Sn,
cycle graph Cn, path graph Pn, bipartite graph Bn1,n2

, and complete
bipartite graph Kn1,n2

. Every one of these graphs has its own compa-
rable characteristics. For instance, among all graphs in Gn a complete
graph has the maximum number of edges and a star graph has the
maximum number of nodes with degree one. A path graph is a tree
with minimum number of nodes of degree one. We refer to reference
[11] for more details and discussions. A tree is a connected graph on
n nodes with exactly n− 1 edges. A unicyclic graph is a connected
graph with exactly one cycle. A d-regular graph is a graph where all
nodes have identical degree d. A subgraph F of a graph G is a spanning
subgraph if it has the same node set as G. An edge is called a cut-edge
whose deletion increases the number of connected components.

For a given Laplacian matrix LG , the corresponding resistance
matrix RG = [rij ] is defined using the Moore-Penrose pseudo-inverse
of LG by setting rij = l†ii + l†jj − l†ji − l†ij , where L†

G = [l†ij ]. The
quantity rij is so called the effective resistance between nodes i and j.
Finally, the total effective resistance rtotal is defined as the sum of the
effective resistances between all distinct pairs of nodes, i.e.,

rtotal =
1

2
1T
nRG1n =

1

2

n∑
i,j=1

rij . (2)

III. LINEAR CONSENSUS NETWORKS AND

THEIR PERFORMANCE MEASURES

We consider a class of first-order consensus (FOC) networks whose
dynamics are defined over coupling graphs G = (VG , EG , wG) with
n nodes. For this class of networks, each node corresponds to a
subsystem with a scalar state variable and the interconnection topology
between these subsystems is defined by the coupling graph G. The state
of the entire network is represented by x = [x1, x2, . . . , xn]

T where xi

is the state variable of subsystem i for all i = 1, . . . , n. The dynamics
of this class of FOC networks are governed by

N (LG ;LQ) :

{
ẋ = −LGx+ ξ

y = CQx
(3)

where x is the vector of state variables, ξ is an exogenous white
Gaussian noise with zero-mean and identity covariance matrix, y is
the performance output of the network, LG is the Laplacian matrix of
G, and CQ is the output matrix of the network.

Definition 3: A given graph Q = (VQ,EQ, wQ) is the output graph
of a linear consensus network N (LG ;LQ) if Q admits

LQ := CT
QCQ (4)

as its Laplacian matrix.
The output graph Q exists if the output matrix CQ has zero row

sums. In general, the output graph can be a disconnected graph with
real-valued edge weights. The output graphs help us to better under-
stand how the specific choice of performance output will affect a given
performance measure. We adopt the following class of performance
measures that are defined using the performance outputs.

Definition 4: Suppose that Q is an output graph of N (LG ;LQ).
The performance measure of N (LG ;LQ) is defined as the steady state
variance of the performance output of the network, i.e.,

ρss(LG ;LQ) := lim
t→∞

E
[
y(t)Ty(t)

]
. (5)

In order to ensure that (5) is well-defined, marginally stable and
unstable modes of N (LG ;LQ) must be unobservable from the per-
formance output y. The following two assumptions are made for this
reason.

Assumption 1: For all networks N (LG ;LQ) in this paper, it is
assumed that Q is an output graph according to Definition 3.

According to this assumption, LQ is the Laplacian matrix of the
output graph Q. Examples of admissible output matrices include inci-
dence and centering matrices. When the output matrix is the centering
matrix, i.e., CQ = Mn, the corresponding output graph is a centering
graph, i.e., Q = Mn.

Assumption 2: For all N (LG ;LQ) networks in this paper, the
corresponding coupling graph G is assumed to be connected.

Based on Assumption 2, one can verify that consensus network
N (LG ;LQ) has only one marginally stable mode with eigenvector
1 and all other modes are stable. The marginally stable mode is
unobservable from the performance output y, because the output
matrix of the network satisfies CQ1 = 0. Therefore, the performance
measure (5) is well-defined (cf. [1, Sec. III]).

The performance measure (5) quantifies the performance of the
network in the average. This is because (5) is indeed equivalent to the
square of the H2-norm of the system from the exogenous noise input
to the performance output [1], [12]–[14]. When there is no exogenous
noise input, the steady state of N (LG ;LQ) converges to the consensus
state and the value of the performance measure becomes zero. In the
following, we quantify performance measure (5) for the class of FOC
networks.

Theorem 1: For a given network N (LG ;LQ), the performance
measure (5) can be quantified as

ρss(LG ;LQ) =
1

2
Tr
(
LQL†

G

)
(6)

where L†
G is the Moore–Penrose pseudo inverse of LG .

Proof: Let us define the disagreement vector by [15]

xd(t) := Mnx(t) = x(t)− 1

n
Jnx(t). (7)

By multiplying a vector by the centering matrix, we actually subtract
the mean of all the entries of the vector from each entry. The dynamics
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of N (LG ;LQ) with respect to the new state transformation (7) is so
called disagreement form of the network, which is given by

Nd

(
LGd

;LQ
)
:

{
ẋd = −LGd

xd +Mnξ

y = CQxd

in which LGd
= LG + (1/n)Jn and the new state matrix is indeed

stable. One can easily verify that the transfer functions from ξ to y in
both networks N (LG ;LQ) and Nd(LGd

;LQ) are identical. Therefore,
the H2-norm of the system from ξ to y in both representations are well-
defined and equivalent. Let us consider the integral form of the output
of network Nd(LGd

;LQ) as follows:

y(t) = CQ

t∫
0

e−LGd
(t−τ)Mnξ(τ )dτ. (8)

By substituting y(t) from (8) in (5), calculating the expected value, and
finally taking the limit, the value of the performance measure can be
calculated using the trace formula Tr(PcLQ), where matrix Pc is the
controllability Gramian of the disagreement network Nd(LGd

;LQ)
and it is the solution of the Lyapunov equation

LGd
Pc + PcLGd

−Mn = 0.

Since −LGd
is stable, the above Lyapunov equation has a unique

positive definite solution [16, Th. 7.11]. Using the fact that L†
GLGd

=

LGd
L†

G =Mn, we get Pc=(1/2)L†
G and the desired result follows. �

If the output graph is a centering graph, then the performance
measure (6) reduces to

ρss(LG ;Mn) =
1

2
Tr
(
L†

G

)
=

1

2

n∑
i=2

λ−1
i (9)

where λi for i = 2, . . . , n are nonzero eigenvalues of LG and λ1 = 0
according to Assumption 2.

Remark 1: The performance measure (6) relates to the concept of
coherence in consensus networks and the expected dispersion of the
state of the system in steady state [1], [12]. It also has close connections
to the total effective resistance of graph G as follows:

ρss(LG ;Mn) =
1

2n
rtotal (10)

where the total effective resistance of G is given by rtotal =
n
∑n

i=2 λ
−1
i ; we refer to [1], [17] for more details.

IV. FUNDAMENTAL LIMITS ON THE PERFORMANCE MEASURE

We evaluate the performance of the class of FOC networks (3) with
respect to the centering output graph with the following corresponding
performance measure:

ρss(LG ;Mn) =
1

2

n∑
i=2

λ−1
i . (11)

In this section, several scenarios are investigated in order to reveal the
important role of the coupling graphs of FOC networks on emergence
of fundamental limits on (11).

A. Universal Bounds and Scaling Laws

The following result presents universal lower and upper bounds for
the best and worst achievable values for (11) among all FOC networks
with arbitrary unweighted coupling graphs.

Theorem 2: For a given FOC network with an unweighted coupling
graph G ∈ Gn, the performance measure (11) is bounded by

1

2
− 1

2n
≤ ρss(LG ;Mn) ≤

n2 − 1

12
. (12)

Furthermore, the lower bound is achieved if and only if G = Kn, and
the upper bound is reached if and only if G = Pn.

Proof: We use the result of Theorem 9 that implies that for any
graph G with n nodes, we have ρss(LG ;Mn) ≥ ρss(LKn ;Mn), be-
cause graph G is always a subgraph of Kn. A straightforward compu-
tation shows that ρss(LKn ;Mn) = (n− 1)/(2n). On the other hand,
every connected graph G contains a spanning tree T . Using Theorem 9
and the fact that T is a subgraph of G, we get ρss(LG ;Mn) ≤
ρss(LT ;Mn). Moreover, Theorem 3 provides an upper bound for
ρss(LT ;Mn), which is valid for all trees T . Hence, this upper bound
provides the desired upper bound. �

The bounds in inequalities (12) only depend on the network size and
it is assumed that nothing specific is known about the interconnection
topology of the network. These bounds can be tightened if we consider
more specific subclasses of graphs. In the following three theorems, we
improve upon the bounds in Theorem 2 for three important classes of
graphs.

Theorem 3: For a given FOC network with an unweighted tree
coupling graph T ∈ Gn and n ≥ 5, the performance measure (11) is
bounded by

(n− 1)2

2n
≤ ρss(LT ;Mn) ≤

n2 − 1

12
. (13)

Moreover, the lower bound is achieved if and only if T = Sn and the
upper bound is achieved if and only if T = Pn.

Proof: We consider the characteristic polynomial of the
Laplacian matrix of the coupling graph T

ΦT (λ) =
n∑

k=0

(−1)n−kck(T )λk. (14)

From (9) and Vieta’s formulas for (14), it follows that:

ρss(LT ;Mn) =
c2(T )

2c1(T )
. (15)

We also know that c1(T ) =
∏n

i=2 λi and it is equal to n for trees.
Therefore, one can rewrite (15) as follows:

ρss(LT ;Mn) =
c2(T )

2n
. (16)

One of the invariant characteristics of a graph is its Wiener number
that is denoted by W (T ) [18]. This quantity is equal to the sum of
distances between all pairs of nodes of T . It is well known that the
second coefficient of the Laplacian characteristic polynomial of a tree
coincides with the Wiener number, i.e., c2(T ) = W (T ). According to
this fact and (16), it follows that:

ρss(T ) =
W (T )

2n
. (17)

According to [19], if T is a tree with n nodes that is neither Pn nor
Sn, then

W (Sn) < W (T ) < W (Pn). (18)

Furthermore, it is shown that [19]

W (Pn) =

(
n+ 1

3

)
and W (Sn) = (n− 1)2. (19)

From (17), (18) and (19), we have

(n− 1)2

2n
< ρss(LT ;Mn) <

n2 − 1

12
.
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On the other hand, it follows from (19) and (17) that:

ρss(LPn ;Mn) =
n2 − 1

12
and ρss(LSn ;Mn) =

(n− 1)2

2n
.

Therefore, the lower bound in (13) is achieved if and only if T = Sn,
and the upper bound is achieved if and only if T = Pn. �

The lower bound in (13) implies that if the value of the performance
measure for some FOC network is strictly less than (n− 1)2/2n, then
the unweighted coupling graph of the network must contain at least
one cycle. The next result quantifies tight bounds for FOC networks
with exactly one cycle in their coupling graphs.

Theorem 4: For a given FOC network with an unweighted unicyclic
coupling graph in Gn and n ≥ 13, the performance measure (11) is
bounded by

(n− 1)2

2n
− 1

3
≤ ρss(LG ;Mn) ≤

n2 − 1

12
+

3

2n
− 1. (20)

Moreover, the lower bound is achieved if and only if G =
S(K3;K1, . . . ,K1), which is a star-like graph that is formed by
replacing the center of Sn by a clique K3, and the upper bound is
achieved if and only if G = P(K3;K1, . . . ,K1), which is a path-like
graph that is formed by replacing one of the end nodes of Pn by a
clique K3.

Proof: According to (10), the performance measure (11) can be
expressed based on the total effective resistance of the coupling graph
G. Moreover, the total effective resistance of a graph is the same as its
Kirchhoff index. The rest of the proof is a revised version of proof of
[20, Th. 4.4]. We omit the details due to space limitations. �

The lower and upper bounds in (20) are tight, in the sense that if the
value of the performance measure for a FOC network does not satisfy
(20), then the coupling graph of this network is either a tree (with no
cycle) or has at least two cycles. The following result investigates the
performance of a FOC network with a bipartite coupling graph. In
this case, the network consists of two disjoint sets of nodes and the
states of one set depend on the states of the other set and vice versa.
Bipartite graphs appear in several applications such as networks of
electricity sellers and buyers [21, Ch. 12], power networks [22, Sec. 2],
and networks of leaders and followers agents where leaders are only
influenced by their followers and vice versa.

Theorem 5: For a given FOC network with an unweighted bipartite
graph G ∈ Gn, the performance measure (11) is bounded by

1−
	n
2



n�n
2
� ≤ ρss(LG ;Mn) ≤

n2 − 1

12
.

Furthermore, the lower bound is achieved if and only if G =
K�n/2�,�n/2	, and the upper bound is achieved if and only if G = Pn,
where 	.
 and �.� are the floor and ceiling operators, respectively.

Proof: According to Theorem 2, a path graph Pn has the
maximal level of performance measure among all graphs with n nodes.
Moreover, Pn is in fact a bipartite graph. Therefore, we get

ρss(LG ;Mn) ≤
n2 − 1

12
.

The best achievable lower bound can be obtained by some calculations
from (10) and the result of [23, Th. 3.1], which provides bounds on
Kirchhoff index of a bipartite graph. �

The lower bound in Theorem 5 is tight. This is because if the value
of the performance measure is strictly less than 1− 	n/2
/(n�n/2�)
for a given FOC network with an unweighted coupling graph, then the
coupling graph of the network cannot be a bipartite graph.

B. Bound Calculations via Exploiting Structure of Coupling Graphs

In the previous subsection, we derived lower and upper bounds for
the performance measure of networks with unweighted graphs. These
bounds are only functions of the network size. In this subsection, we
incorporate additional knowledge of graph specifications in calculating
lower and upper bounds for the performance measure. We consider
five important graph specifications and extend our analysis for FOC
networks with weighted and unweighted coupling graphs.

1) Graph Diameter and Number of Edges: The diameter of a graph
is the largest distance between every pair of nodes in that graph.

Theorem 6: For a given FOC network with an arbitrary unweighted
graph G ∈ Gn, the performance measure (11) is bounded by

LG ≤ ρss(LG ;Mn) ≤ UG (21)

where LG = (n− 1)2/(4m) and

UG =
1

2n

(
n− 1 +

[(
n

2

)
−m

]
diam(G)

)

where diam(G) is the diameter and m is the number of edges of G.
Proof: For the lower bound, we apply the inequality of arith-

metic and harmonic means and (9)

ρss(LG ;Mn) =
1

2

n∑
i=2

λ−1
i ≥ (n− 1)2

2
∑n

i=2 λi
=

(n− 1)2

4m
.

On the other hand, using (10) and (2) for the upper bound, we get

ρss(LG ;Mn) =
1

2n

∑
i
=j

rij =
1

2n

⎛
⎝∑

e∈EG

re +
∑
e
∈EG

re

⎞
⎠ . (22)

Moreover, based on [24, Lemma 2] for unweighted graph we have∑
e∈EG

re = n− 1. From this fact and (22), it follows that:

ρss(LG ;Mn) =
n− 1

2n
+

1

2n

∑
e
∈EG

re. (23)

We note that the distance between two nodes of graph G is less than or
equal to diam(G). Therefore, we have rij = r{i,j} ≤ diam(G). Using
this fact and (23), we get the desired upper bound

ρss(LG ;Mn) ≤
1

2n

(
n− 1 +

[(
n

2

)
−m

]
diam(G)

)
.

�
Remark 2: We note that a star graph Sn achieves the upper bound in

(21), which means that among all unweighted connected graphs with
diam(G) = 2 and n− 1 links graph Sn has the maximal performance
measure. Also If G = Kn, then the lower and upper bounds in (21)
coincide and ρss(LKn ;Mn) = (n− 1)/(2n).

2) Total Weight Sum: The sum of all edge weights in a weighted
graph G is defined by W (G) :=

∑
e∈EG

wG(e).
Proposition 1: For a given FOC network with an arbitrary weighted

coupling graph G ∈ GW
n , the performance measure (11) is bounded

from below by

ρss(LG ;Mn) ≥
(n− 1)2

4W (G) . (24)

Proof: It can be shown that ρss(LG ;Mn) is a Schur-convex
function with respect to [λ2, . . . , λn]

T ∈ R
n−1
++ , where λi for i =

2, . . . , n are eigenvalues of LG . On the other hand, we have

Tr(LG)

n− 1
1T
n−1 � [λ2, . . . , λn]

T.

Therefore, according to the definition of Schur-convex functions, we
can conclude inequality (24). �
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3) Number of Spanning Trees: A spanning subgraph of G is called
a spanning tree if it is also a tree. The weighted number of spanning
trees of a connected graph G = (VG ,EG , wG) is defined by

T(G) :=
∑
T

∏
e∈ET

wG(e) (25)

where the summation runs over all spanning trees T of G. For
unweighted graphs, the total number of spanning trees of a connected
graph is an invariant graph specification.

Proposition 2: For a given FOC network with an arbitrary weighted
coupling graph G ∈ GW

n , the performance measure (11) is bounded
from below by

ρss(LG ;Mn) ≥
n− 1

2 n−1
√

nT(G)
(26)

where T(G) is the number of spanning trees of G defined by (25).
Proof: By applying the inequality of arithmetic and geometric

means to (9), we get

ρss(LG ;Mn) =
1

2

n∑
i=2

λ−1
i ≥ n− 1

2
n−1

√√√√ n∏
i=2

λ−1
i . (27)

Using Kirchhoff’s matrix tree theorem the number of spanning trees
of graph can be expressed as T(G) = (1/n)

∏n
i=2 λi. Then, using this

fact and (27), we get the desired lower bound. �
The result of this proposition holds for general weighted connected

graphs. However, for some particular classes of unweighted connected
graphs, the total number of spanning trees can be calculated explicitly
as a function of n. For example, for an unweighted complete graph Kn

the total number of spanning trees is T(G) = nn−2. In fact, the lower
bound in (26) is tight for weighted and unweighted graphs and it can be
achieved by complete graphs. Nonetheless, our analysis shows that the
proposed lower bound in (26) is not tight for the class of unweighted
tree, cycle, and complete bipartite graphs. As we discussed earlier, our
results in Section IV-A are tight for these classes of graphs.

4) Number of Cut Edges: An edge e is called a cut edge of G if
removing e from G results in more than one connected component.
The total number of cut edges in G is denoted by κ(G).

Theorem 7: For a given FOC network with an arbitrary unweighted
coupling graph G ∈ Gn that has κ(G) cut edges, the performance
measure (11) is bounded from below by

ρss(LG ;Mn) ≥
1

2n
+

κ(G) + 1

2
− 1

n− κ(G) . (28)

The equality holds if and only if G = S(Kn−κ(G);K1, . . . ,K1), i.e.,
G is a star graph that is formed by replacing the center of the star with
a clique Kn−κ(G).

Proof: It is shown that the performance measure of (3) can
be calculated by ρss(LG ;Mn) = rtotal/(2n). Moreover, in reference
[25] it is shown that the rtotal can be bounded from below as

rtotal ≥ n (κ(G) + 1) + 1− 2n

n− κ(G)
for all connected graphs with n nodes and κ(G) cut edges. The lower
bound can be achieved if and only if G=S(Kn−κ(G);K1, . . . ,K1). �

For a given graph in Gn, the number of cut edges satisfies 0 ≤
κ(G) ≤ n− 1, where a tree with n− 1 cut edges has the maximum
and a complete graph with zero cut edge has the minimum number of
cut edges among all graphs in Gn. A simple calculation reveals that the
lower bound in (28) gains its maximum value for tree and its minimum
value for complete graphs. This asserts that the lower bound in (28) is
tight according to the results of Theorems 2 and 3.

5) Degree Sequence: A degree sequence is a monotonic nonin-
creasing sequence of the node degrees of the coupling graph.

Theorem 8: For a given FOC network with an arbitrary weighted
coupling graph G ∈ GW

n and degree sequence {di}ni=1, the perfor-
mance measure (11) is bounded from below by

ρss(LG ;Mn) ≥ Δ(G) (29)

where

Δ(G) := max
α>0

{
− 1

nα
+

n∑
i=1

1

2di + α

}
. (30)

For an arbitrary unweighted coupling graph G ∈ Gn, the quantity (30)
reduces to Δ(G) = −(1/2n) + (n− 1)/(2n)

∑n
i=1(1/di), where

the equality holds if G is a complete graph or complete bipartite graph.
Proof: The proof is done for two different cases as follows.

Weighted Graph: Let us assume that L̃G = LG + αJn and α > 0.
The eigenvalues of L̃G are nα, λ2, . . . , λn, where λi’s are eigenvalues
of LG . Based on Schur-Horn theorem the diagonal elements of L̃G are
majorized by its eigenvalues. Therefore, we have

n∑
i=1

1

di + α
≤ 1

nα
+

n∑
i=2

λ−1
i . (31)

From the definition of ρss(LG ;Mn) and (32), it follows that:

−1

nα
+

n∑
i=1

1

2di + α
≤ ρss(LG ;Mn). (32)

Unweighted Graph: Using the same idea in the proof of Theorem 6,
we can rewrite the performance measure of (3) as follows:

ρss(LG ;Mn) =
n− 1

2n
+

1

2n

∑
e
∈EG

re.

Note that rij = r{i,j} ≥ (1/di) + (1/dj). This implies that

ρss(LG ;Mn) ≥
n− 1

2n
+

1

2n

∑
{i,j}
∈EG

(
1

di
+

1

dj

)

=
−1

2n
+

n− 1

2n

n∑
i=1

1

di
.

The interested reader is referred to [26] for similar arguments. �
For unweighted coupling graphs, the lower bound given by Theorem 8

is tighter than the lower bound given by Theorem 6. For d-regular
weighted coupling graphs, the lower bound isΔ(G)=(n − 1)2/(2nd).
This lower bound is tight for FOC networks with weighted coupling
graphs, in the sense that the performance measure of a FOC network
with the weighted coupling graph Kn with identical edge weights
d/(n− 1) meets the lower bound.

Remark 3: In Theorem 2, it is shown that the performance measure
of a FOC network with an arbitrary unweighted coupling graph in Gn

is always less than or equal to (n2 − 1)/12. In the following, we show
by means of three simple examples that the performance measure of a
FOC network with a weighted coupling graph can be made arbitrarily
large. We consider a FOC network with three nodes and path coupling
graph. The edge weights are given by w({1, 2}) = a and w({2, 3}) =
1− a, where a > 0. For different values of parameter a, the total sum
of edge weights is equal to 1. However, we have ρss(LG ;Mn) → ∞
as a → 0. Which implies that the performance measure cannot be
uniformly bounded from above. Now for this graph, let us change the
edge weights to w({1, 2}) = a and w({2, 3}) = a−1. According to
(25), the total number of spanning trees of this graph is equal to 1. It
is straightforward to verify that ρss(LG ;Mn) → ∞ as a → 0. In the
third scenario, let us consider a cyclic graph with four nodes and edge
weights w({1, 2})=w({3, 4})=a and w({2, 3})=w({1, 4})=1−a.
In this case, the weighted degree sequence is d1 = d2 = d3 = d4 = 1.
A simple calculation shows that ρss(LG ;Mn)→∞ as a → 0. These
examples explain why the performance measure of a FOC network



4060 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 61, NO. 12, DECEMBER 2016

with a weighted coupling graph can be arbitrarily large. For compari-
son purposes, the results of Theorems 2-4 and 7 are applied to different
graphs and the results are explained in Figs. 1–3.

C. Interpretation of Bounds as Fundamental Limits

The value of the performance measure (5) for linear consensus
network (3) is equal to the average output energy of the network
when ξ(t) = 0 for all t ≥ 0 and with a white Gaussian random initial
condition x(0) that satisfies E[x(0)x(0)T] = In. In fact, it can be
shown that

ρss(A;LQ) = E

⎡
⎣ ∞∫

0

y (t;x(0))T y (t;x(0)) dt

⎤
⎦ (33)

where y(t;x(0)) is the output of the linear dynamical network with
respect to initial condition x(0). This relationship enables us to equiv-
alently interpret the performance measure (5) as the average energy
needed to be consumed throughout the network in order to render
the state of the randomly perturbed linear dynamical network to its
equilibrium (i.e., consensus) state. Therefore, our theoretical bounds
in Section IV-A and B can be viewed as quantification of inherent
fundamental limits on the minimum average energy required to be
dissipated in the network in order to reach the consensus state again
in steady state. The use of term fundamental (or equivalently hard)
limits for lower and upper bounds in Section IV-A and B is appropriate
and meaningful. The reason is that according to our results, the
performance measure of a linear consensus network whose coupling
graph has some known graph specification (e.g., number of nodes,
number of spanning trees, total sum of edge weights, degree sequence,
etc.) cannot be better and worse than our theoretical lower bounds and
upper bounds, respectively. The philosophy behind our several results
presented in Section IV-B can be explained by portraying the value of
performance measure for FOC networks versus various known graph
specifications. In order to conceptualize the idea, we only focus on
three graph specifications in our analysis. Figs. 4–6 depict the value
of the performance measures for FOC networks with coupling graphs
in G

W
7 . In these figures, the points with star markers correspond to

performance measures of all FOC networks with unweighted graphs
in G7. The total number of such networks are 1,866,256. In all three
figures, the gray shaded area above the red dashed curve corresponds
to performance measures of FOC networks with weighted coupling
graphs. In Fig. 4, the performance measure (11) is drawn for different
values of weight sum W (G). The lower bound in (24) is highlighted by
a red dashed curve and it draws a fundamental limit on the best achiev-
able performance measures. One observes that the lower bound in (24)
is tight for a given value of weight sum. In fact, for a given W (G)
there exists a weighted graph with total weight sum W (G) whose
performance measure reaches the exact value of the fundamental limit
(n− 1)2/(4W (G)), where in this simulation n = 7. However, this
lower bound is loose for unweighted graphs. For unweighted graphs,
the weight sum is equal to the total number of edges in the coupling
graph and it only assumes integer values. By exhausting all possible
choices for unweighted graphs with identical number of edges in
Fig. 4, we show that there is a gap between the actual best achievable
lower bound and our theoretical fundamental limit in (24). It can be
perceived that this gap is smaller for denser coupling graphs. This
observation suggests that our theoretical fundamental limit in (24)
is looser for sparse coupling graphs and have tighter gaps for dense
coupling graphs. Nevertheless, having more detailed knowledge about
graph specifications helps to close the gap. For example, the weight
sums for FOC networks with tree and unicyclic coupling graphs are
equal to 6 and 7, respectively. In these cases, the actual minimum and

Fig. 1. This figure illustrates results of Theorems 2 and 3 for the following
extreme cases. The performance measure (11) is (a) maximal for P5 among all
graphs as well as among all trees in G5, (b) minimal for S5 among all trees in
G5, and (c) minimal for K5 among all graphs in G5.

Fig. 2. Unicyclic graphs that achieve the lower and upper bounds in Theorem 4:
(a) G = S(K3;K1, . . . ,K1), and (b) P(K3;K1, . . . ,K1).

Fig. 3. Schematic graph of S(K4;K1,K1,K1) that has the minimal value
of performance measure among all graphs in G7 with exactly three cut edges
(highlighted by red color).

Fig. 4. The gray shaded area depicts the value of the performance measure for
all FOC networks with coupling graphs in GW

7 and star markers correspond to
performance measures of all FOC networks with unweighted graphs in G7. The
red dashed curve portrays the lower bound in (24).

maximum achievable values of performance measure exactly matches
with our theoretical fundamental limits in (20) and (13).

To summarize our discussion in this part, one can also set out similar
arguments for Figs. 5 and 6 to infer that our theoretical fundamental
limits in Section IV-B are looser for “fairly” sparse coupling graphs
and have tighter gaps for dense coupling graphs. As we discussed in
Section IV-A, one can exploit the structural properties of networks
with sparse coupling graphs (e.g., trees and unicyclics) to quantify
tight fundamental limits.

V. FUNDAMENTAL TRADEOFFS BETWEEN NOTIONS OF

SPARSITY AND THE PERFORMANCE MEASURE

One of the design objectives for large-scale linear consensus net-
works is to optimize network coherence by designing a coupling
graph that has the best possible sparsity and locality features. A
fundamental property of performance measures (11) is that they are
monotonically decreasing functions of the coupling graphs in the
cone of positive semidefinite matrices. This property implies that
the value of the performance measure increases by sparsifying the
coupling graph, which is consistent with our results in Section IV-A.
In this section, we quantify fundamental tradeoffs between the per-
formance measure (11) and sparsity measures of FOC networks. The
results of the following theorem assert that the performance of a
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Fig. 5. The gray shaded area depicts the value of the performance measure for
all FOC networks with coupling graphs in GW

7 and star markers correspond
to performance measures of all FOC networks with unweighted graphs in G7.
The red dashed curve depicts the lower bound in (26).

Fig. 6. The gray shaded area depicts the value of the performance measure for
all FOC networks with coupling graphs in GW

7 and star markers correspond
to performance measures of all FOC networks with unweighted graphs in G7.
The red dashed curve outlines the lower bound in (29) for unweighted graphs.

spanning subnetwork of a given FOC network never outperforms the
performance of the parent network.

Theorem 9: Suppose that G ∈ GW
n is the coupling graph of a given

FOC network. If F is a connected spanning subgraph of G, then

ρss(LG ;Mn) ≤ ρss(LF ;Mn) (34)

and the equality holds if and only if G = F .
Proof: Since graph F is a subgraph of graph G, we have the

following inequality for every x ∈ Rn:

xTLGx =
∑

e={i,j}∈EG

w(e)(xi − xj)
2

≥
∑

e={i,j}∈EF

w(e)(xi − xj)
2 = xTLFx. (35)

This inequality implies that LF ≤ LG , or equivalently we have L†
G ≤

L†
F . From the linearity property of the trace operator and the fact that

L†
F − L†

G is a positive semi-definite matrix, we get

1

2
Tr
(
L†

F − L†
G

)
=

1

2
Tr
(
L†

F

)
− 1

2
Tr
(
L†

G

)
= ρss(LF ;Mn)− ρss(LG ;Mn) ≥ 0.

This completes the proof. �
The result of this theorem implicitly asserts that adding new edges

to the coupling graph of a consensus network may improve the global
performance of the network. In the following, we identify several
Heisenberg-like inequalities that quantify inherent fundamental trade-
offs between global performance and sparsity in FOC networks. First,
we consider the following sparsity measure:

‖AG‖0 := card {aij �= 0|AG = [aij ]} (36)

where AG is the adjacency matrix of the coupling graph G. For a given
graph, the value of this sparsity measure is equal to twice the number
of the edges.

Theorem 10: For a given FOC network with an arbitrary unweighted
coupling graph G ∈ Gn, there is a fundamental tradeoff between
the performance measure (11) and the sparsity measure (36) that is
characterized in the multiplicative form by the following inequality:

ρss(LG ;Mn)‖AG‖0 ≥ (n− 1)2

2
(37)

and in the additive form by

ρss(LG ;Mn)− 1
2
+ 1

2n

diam(G) +
‖AG‖0
4(n− 1)

≤ n

4
. (38)

Let us consider the class of networks with identical number of
nodes and compare several scenarios. The inequality (37) asserts that
the best achievable values of performance measure (11) for sparse
FOC networks are comparably larger (worse) with respect to less
sparse FOC networks. For all FOC networks with identical diameters,
inequality (38) implies that networks with more edges have smaller
(better) values of performance measures. Among all FOC networks
with identical number of edges, the ones with larger diameters can
assume larger (worse) values of performance measures.

Theorem 11: Let us consider the class of FOC networks with
arbitrary unweighted coupling graphs in Gn and a given desired
performance level ρ∗ss. Then, the sparsity measure (36) for this class
of networks satisfies

(n− 1)2

2ρ∗ss
≤ ‖AG‖0 ≤ (n− 1)

[
n− 4

(
ρ∗ss − 1

2
+ 1

2n

diam(G)

)]
. (39)

The result of this Theorem states that the graph diameter can be
employed as a design parameter to achieve a desirable level of per-
formance and sparsity.

The second sparsity measure that we consider in this section is so
called S0,1-measure and defined by

‖AG‖S0,1
:= max

{
max
1≤i≤n

‖AG(i, .)‖0 , max
1≤j≤n

‖AG(., j)‖0
}

where AG(i, .) represents the i’th row and AG(., j) the j’th column of
adjacency matrix AG . The value of the S0,1-measure of a matrix is the
maximum number of nonzero elements among all rows and columns
of that matrix [27]. The S0,1-measure of adjacency matrix of an
unweighted graph is equal to the maximum node degree. The following
result quantifies an inherent tradeoff between the performance measure
and this sparsity measure.

Theorem 12: For a given FOC network with an arbitrary unweighted
coupling graph G ∈ Gn and n ≥ 3, there is a fundamental tradeoff
between the performance measure (11) and the S0,1-measure that is
characterized by(

ρss(LG ;Mn) +
1

2n

)
‖AG‖S0,1

≥ n− 1

2
. (40)

The value of the S0,1-measure reveals some valuable information
about sparsity as well as the spatial locality features of a given adja-
cency matrix, while sparsity measure (36) only provides information
about sparsity. The inequality (40) asserts that the best achievable
levels of performance measure (11) decreases by improving local
connectivity in the coupling graph of a FOC network.

The third sparsity measure of our interest for the class of FOC
networks with unweighted coupling graphs is defined by

σ(G) := max
i,j∈VG

{card {N(i) ∪N(j)}} (41)

where N(i) is the set of all nodes that are connected to node i by an
edge. The value of the sparsity measure σ(G) is equal to the maximum
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number of nodes that are connected to any pair of nodes among
all pairs of nodes in the graph. It is easy to verify that σ(G) ≤ n.
The following result quantifies an inherent tradeoff between the per-
formance measure and this sparsity measure.

Theorem 13: For a given FOC network with an arbitrary unweighted
coupling graph G ∈ Gn and n ≥ 3, there is a fundamental tradeoff
between the performance measure (11) and sparsity measure (41) that
is quantified by

ρss(LG ;Mn)σ(G) ≥
n− 1

2
. (42)

Moreover, the equality holds if G = Kn.
Proof: Based on the inclusion-exclusion principle, we have

card {N(i) ∪N(j)} = di + dj − card {N(i) ∩N(j)} (43)

where di and dj are degrees of node i and node j, respectively. Using
(41) and (43), it follows that:

σ(G) = max
i,j∈VG

i�=j

{di + dj − |N(i) ∩N(j)|} .

Then, according to [28] for the maximum eigenvalue of LG we have
λn ≤ σ(G). By combining this inequality and (9), we get the desired
lower bound. �

To summarize our results in this section, we conclude that there
are intrinsic fundamental tradeoffs between the two favorable design
objectives in linear consensus networks: minimizing the performance
measure and sparsifying the coupling graph.

VI. DISCUSSION

Several relevant network synthesis problems can be formulated in
order to optimize the performance measure of a linear consensus
network. There has been some recent work in this area, such as [5],
[29], [30]. Some of these design problems are inherently combinatorial
and intractable. For instance, problems of minimizing the performance
measure by rewiring a given network with fixed number of edges or
by adding a few new edges to the network are generally NP-hard
problems. Therefore, having some meaningful estimates for the best
achievable values of the performance measure is helpful in evaluating
the efficiency of a proposed approximate algorithm to solve such
non-convex and generally intractable design problems. Our lower
and upper bounds in this paper provide sensible estimates for the
best achievable values of the performance measure as a function of
graph specifications. Moreover, if we consider the network size as
design parameter, our results in Section IV-A show how rapidly the
performance of a linear consensus network deteriorates as the size of
network grows larger.

One observes that the performance measure (11) has several in-
teresting functional properties. This measure is a convex function of
Laplacian eigenvalues and monotonically decreasing in the space of
Laplacian matrices of all connected graphs. The results of Section V
highlight the importance of monotonicity property by quantifying inhe-
rent fundamental tradeoffs between sparsity and performance. A
promising research direction is to investigate whether these functional
properties can be used to categorize larger classes of admissible perfor-
mance measures for linear consensus networks [29].
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