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Convergence Analysis of Classes of Asymmetric
Networks of Cucker–Smale Type With
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Abstract—We discuss two extensions of the Cucker-
Smale flocking model with asymmetric coupling weights.
The first model assumes a finite collection of autonomous
agents aiming to perform a consensus process in the pres-
ence of identical internal dynamics. The second model
describes a similar population of agents that perform ve-
locity alignment with the restriction of collision-free orbits.
Although qualitatively different, we explain how these mod-
els can be analyzed under a common framework. Rigorous
analysis is conducted toward establishing sufficient con-
ditions for asymptotic flocking to a synchronized motion.
Applications of our results are compared with simulations
to illustrate the effectiveness of our theoretical estimates.

Index Terms—Convergence, networked control systems,
nonlinear systems.

I. INTRODUCTION

FOR THE past two decades, there has been broad interest
in the study of cooperative dynamic algorithms that run

among autonomous interconnected entities. Perhaps the most
prominent family is this of consensus networks. The standard
setting regards n <∞ agents each of which is represented by
a state zi ∈ R for i = 1, . . . , n. The rate of change of the states
zi, i = 1, . . . , n is governed by the following protocol:

żi =
n∑

j=1

wij (t)(zj − zi). (1)

The non-negative numbers wij are coupling weights that char-
acterize the effect of agent j onto the agent i. Certain criteria
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imposed on wij ensure the asymptotic consensus property

zi(t) → z∗ as t→ ∞ for i = 1, . . . , n.

The common equilibrium point z∗ ∈ R lies in the set defined by
the convex hull of the initial values. The research on connectivity
conditions for (1) is a saturated subject (see [10], [11], [17], [19],
[20], [31], and references therein). On the contrary, there are
fewer works in nonlinear consensus dynamics, some of which
we review below.

A. Types of Nonlinear Consensus Protocols

Manfredi and Angeli [13] and Moreau [18] study necessary
and sufficient conditions of convergence to consensus in dis-
crete and continuous time versions of nonlinear networked co-
operative systems represented by

xi(k + 1) = fi( k, x1(k), . . . , xn (k) ), k ∈ N,

and

ẋi = fi( t, x1 , . . . , xn ), t ∈ R,

respectively. Nonlinear versions of (1) were investigated in [1]
and [22]

żi =
n∑

j=1

wij (t, zj − zi) (1.2)

and

żi =
n∑

j=1

wij (t, zj ) −
n∑

j=1

wij (t, zi). (1.3)

Cucker and Smale [5], [6] introduce a system that models the
emergence of bird flocking. In this setting, the state of agent
i consist of its position xi ∈ Rr and velocity vi ∈ Rr , stacked
as (xi, vi) ∈ Rr × Rr . For an initial configuration (x0

i , v
0
i ) for

i = 1, . . . , n, the dynamics of the network are given by

ẋi = vi

v̇i =
n∑

j=1

wij (x)(vj − vi). (2)

The class of dynamical networks that (2) belongs to is known
as the second-order consensus class. Linear versions of such
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schemes have also been previously studied (see, for example,
[15] and [32]). In (2), the coupling weights are assumed to be
decreasing functions of distance in the following form:

wij (x) =
K

(σ2 + ‖xi − xj‖2)β
(3)

where K,σ, β > 0 are coupling parameters and ‖.‖ is the Eu-
clidean norm. The form of wij imposes the following spatial
decaying condition: the larger the relative distance between two
agents, the smaller their interaction. It may then occur that the
agents will not be positioning themselves sufficiently close. This
may, in turn, result in the network failing to preserve strong
enough connectivity to achieve global speed alignment. The ob-
jective in (2) is to derive initial conditions that ensure a strong
enough network to allow global flocking to a common consensus
state. The authors exploit the explicit form of wij , in particu-
lar, its symmetry, and use algebraic graph theory to establish a
stability condition that involves the initial data and the param-
eters K,σ, and β from (3). Since the seminal work of Cucker
and Smale, (2) has been improved in several ways. The work
in [8] provides a simple proof for general vanishing symmetric
couplings. In [16], Martin et al. derive convergence results for
general symmetric weights without the infinite distance connec-
tivity condition. In [23], the results are extended to asymmetric
couplings. Somarakis and Baras [25], [27] provide extensions to
asymmetric couplings with simple and switching connectivity in
the presence of time delay. Furthermore, [4] examines (2) under
the effect of repelling symmetric functions. A convergence result
that summarizes the contribution of most of the aforemenioned
works illustrates the kind of sufficient conditions for asymptotic
velocity alignment so that the network does not get dissolved.

Theorem 1 ([23], [27]): Suppose that the nonlinear dynami-
cal network (2) with coupling weightswij (x) ≥ ψ(maxij |xi −
xj |), where ψ is a non-negative integrable function. If the initial
data satisfy

max
i,j

|v0
i − v0

j | <
∫ ∞

maxi , j |x0
i −x0

j |
ψ(s) ds

then the solution (x, v) of (2) satisfies
1) |vi(t) − vj (t)| → 0 as t→ ∞,
2) sup

t≥0
|xi(t) − xj (t)| <∞, for i, j = 1, . . . , n.

The underlying argument for the inequality condition involves
a rate of convergence estimate of the state of the network to its
equilibrium that explicitly depends on the network parameters.

For symmetric couplings, the appropriate theoretical machin-
ery is provided through algebraic graph theory [3]. Otherwise,
one should leverage results from non-negative matrix theory [9],
[24]. All of the aforementioned references focus exclusively on
system (2). The stability conditions of Theorem 1 shed no light
in the event that the agents are expected to collectively exe-
cute a more complex coordination task, different than simple
convergence to a common equilibrium.

B. Our Contributions

In this paper, we introduce and discuss a class of exten-
sions of the classic Cucker–Smale model represented by (2) that

considers nonlinear deterministic perturbations. These models
describe how a group of agents can benefit from asymmetric
state-dependent graphs with spatially decaying couplings to per-
form more elaborate collaborative tasks, rather than performing
the simple task of converging to a consensus state.

The importance of considering perturbed versions of (2) is to
understand the inherent interplay between being able to accom-
plish complex collective behaviors and the coupling structure
of the underlying dynamical network. Our goal is to investigate
to what extent we can push the envelope to modify existing
gold-standard and well-studied dynamical networks to allow
them to exhibit more complex collective behaviors. Toward this
end, we address two types of state-dependent perturbations, rel-
evant to network models of type (2) that describe real-world
paradigms.

The first extension takes into account the scenario of agents
aiming to perform a consensus process in the presence of an in-
ternal generic dynamic rule. For instance, birds in a flock can fly
individually or in coordination with other birds, possibly toward
a synchronized complex motion different than a simple velocity
coordination. This feature is modeled with an extra nonlinear
term in (2) that makes the inequality flocking condition of The-
orem 1 inapplicable. In Section III-A, it is shown how this class
of networks can be analyzed.

The second extension is a perturbation of (2) that destabilizes
the coordination process so long as the relative position of agents
falls below a certain safety margin. Such a safety restriction
can prevent a network with fast decaying coupling strength
from achieving global convergence. Similar to the first case,
a generalization of Theorem 1 is needed to ensure flocking
conditions. In Section III-B, we show that under a new set of
technical conditions, design of flocking without collision can be
achieved.

In addition, several examples are discussed to truthfully verify
the strength of the imposed conditions in either case. This paper
concludes with discussing extensions of our results for networks
with nonlinear coupling terms.

C. Literature Review

The subject of multi-agent synchronization is rather mature
and well documented in the context of linear networks (see [7]
and [33] for control theoretic perspective or [21] and [34] for
a physics approach and references therein). In [28], Somarakis
et al. analyze first-order synchronization schemes with time-
dependent topologies where the internal dynamics may desta-
bilize the alignment process. The work establishes sufficient
conditions between the internal rule and the coupling scheme,
in order for asymptotic synchronization to occur. To the best
of our knowledge, the literature lacks a study of synchroniza-
tion networks where the state of the network is correlated to
the strength of the coupling as such is the case in networks of
Cucker–Smale type.

Prior works on the subject of flocking with collision avoid-
ance in Cucker–Smale type networks include [4] and [26]. In [4],
Cucker and Dong study a collision-avoidance problem (model
(12) of our work) on a framework based on the symmetry as-
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sumption of coupling weights. Their results seize to hold when
the couplings and the repelling functions are not symmetric. The
asymmetry on the coupling terms has been highlighted in the
literature as a very important feature in real-world biological
and natural networks [2]. This paper is an outgrowth of [29] in
various directions. The synchronization scheme is considered
under milder assumptions and multidimensional internal dy-
namics. This gives rise to stability conditions that generalize the
ones in [29]. Finally, for the collision-free model, we provide a
detailed proof of the convergence result.

II. PRELIMINARIES

Notations: For any k ∈ N, [k] is the set consisting of the first
k natural numbers, that is, [k] := {1, . . . , k}. By n <∞, we
understand the number of autonomous agents. The communi-
cation scheme is represented by a weighted graph G = ([n], E)
where [n] is the set of nodes and E =

{
wij : i, j ∈ [n]

}
is

the set of weighted edges. We denote the weighted degree of
node i as di =

∑
j wij . The dynamics evolve in Rr for some

r ≥ 1 that is endowed with the inner product 〈·, ·〉 and the
Euclidean norm ‖ · ‖. Each agent i ∈ [n] is characterized by
the state (xi, vi) ∈ Rr × Rr , where xi = (x(1)

i , . . . , x
(r)
i ) and

vi = (v(1)
i , . . . , v

(r)
i ) stand for the position and velocity of i, re-

spectively. Compact representation of the overall network state
include x = (x1 , . . . , xn ) and v = (v1 , . . . , vn ) for elements x
and v in the augmented space Rnr . For l ∈ [r], the spread of
y ∈ Rnr in the lth dimension is

Sl(y) = max
i
y

(l)
i − min

i
y

(l)
i = max

i,j
|y(l)
i − y

(l)
j |

and finally we denote S(y) = maxl Sl(y). Throughout this pa-
per, we reserve the notation “·” for the classic derivative and d

dt
for the right-hand Dini derivative.

The Contraction Coefficient: The problem of stability in
asymmetric consensus networks is associated with the asymp-
totic behavior of products of non-negative matrices [24]. This
behavior is, in turn, investigated with the use of the contrac-
tion coefficient. This instrumental notion to the theory of non-
negative matrices, estimates the averaging effect of stochastic
matrices when they act on vectors. Below, we present the follow-
ing generalization: For a P = [pij ], non-negative n× n matrix
with constant row sums (i.e.,

∑
j pij ≡ m), it holds that

S(Pz) ≤ τ(P )S(z), ∀ z ∈ Rn

where

τ(P ) = m− min
i 
=i′∈[n ]

n∑

k=1

min{pik , pi ′k} (4)

is the contraction coefficient. A proof of this result can be found
in [9]. While the framework is primarily compatible with dis-
crete time dynamics, it can be adapted to continuous time sys-
tems, [23], [27], [28]. The contributions of this paper rely on
auxiliary results (see Lemmas 5 and 11, below) which, in turn,
occur as elaborate modifications of the contraction estimate (4).

III. NETWORKS OF CUCKER–SMALE TYPE WITH

DETERMINISTIC PERTURBATIONS

Let n be a number of agents and i ∈ [n] with the state
(xi, vi) ∈ Rr × Rr . The models we consider in this paper can
be cast as the following system of equations:

ẋ
(l)
i = v

(l)
i

v̇
(l)
i =

n∑

j=1

(
wij (t, x) + b

(l)
ij (t, x, v)

)
(v(l)
j − v

(l)
i ), t ≥ t0

(5)

for l ∈ [r],wij are the coupling terms and bij : R × Rl × Rl →
Rl a nontrivial deterministic perturbation between agents j and
i. This perturbation may, in general, depend on both time and
state. We look at two meaningful scenarios of this general model,
assuming corresponding special forms of bij . One form leads
to flocking to a synchronization solution while the other form
leads to collision-less velocity coordination.

A. Heterogeneous Synchronization Using Diffusion
Processes

The first type of perturbation considers a situation where
agents, in addition to the consensus averaging, attain an indi-
vidual way of flying that is dictated by an internal dynamical
behavior. For this case we take (5) with

b
(l)
ij (t, x, v) =

g(l)(t, vi)

v
(l)
j − v

(l)
i

.

Then, for t0 ∈ R, we are led to the initial value problem

ẋi = vi

v̇i = g(t, vi) +
n∑

j=1

wij (t, x)(vj − vi), t ≥ t0

xi(t0) = x0
i , vi(t0) = v0

i ∈ Rr , given. (6)

An agent’s velocity is affected by both the state of the other
nodes and by an inherent dynamical process. The state of the
other nodes affects the agent at a rate that depends on time and
on the position vector x. It is, therefore, far from clear that the
condition of Theorem 1 ensures convergence. Our objective is to
reveal the interplay between the coupling forces of the consensus
network, the initial configuration, and the potential instability
induced by the internal dynamics through a new stability con-
dition. We proceed by stating assumptions on the acceptable
behavior of the internal dynamic system and conclude with a
condition on the coupling functions.

Let for t ≥ t0 the initial value problem

ż = g(t, z), z(t0) = z0 ∈ Rr (7)

together with its solution z = z(t, t0 , z0) defined in a maximal
interval [t0 , T ). The hypothesis below aims to establish the well
posedness of z.

Assumption 2: The function g(t, z) is defined in R × V ,
where V an open subset of Rr . It is continuous in t ∈ R and
attains continuous first derivative in z ∈ V .
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We impose the following smoothness and boundedness con-
ditions on the coupling weights.

Assumption 3: The following statements hold for the func-
tions wij (t, x):

1) They are continuous functions of t and continuously dif-
ferentiable functions of x.

2) They satisfy

∞ > w ≥ sup
t≥t0

sup
x

max
i 
=j

wij (t, x) ≥ inf
t≥t0

wij (t, x)

≥ ψ(S(x))

for ψ ≥ 0 an integrable and nonincreasing function.
The rates wij are uniformly bounded from above, but not

from below as ψ(·) is allowed to vanish. This means that
Assumption 3 allows the spatially decaying property. In ad-
dition, it allows for either symmetric or asymmetric couplings.
For the statement of the first result, we are in need of some
additional notation. Let

K(t, l, y, w) =
∫ 1

0

∂

∂z(l) g
(l)(t, qy + (1 − q)w) dq

+
∑

h 
= l

∣∣∣∣
∫ 1

0

∂

∂z(h) g
(l)(t, qy + (1 − q)w) dq

∣∣∣∣

and for the maximal solution
(
x(t), v(t)

)
, t ∈ [t0 , T ) of (6)

K = sup
t∈[t0 ,T )

max
i,i′∈[n ],l∈[r ]

K(t, l, vi(t), vi ′(t)). (8)

This quantity represents the effect of the internal dynamic rule
g in the coupling process. Evaluated on the maximal solution,
K, is the worst case estimate that we must take into account
in order to derive initial conditions that compensate for the
potential instability that g will induce in the system that will in
turn weaken the coupling rate wij . Observe also inK(t, l, y, w)
that the cross terms ∂

∂z (h ) g
(l) for h 
= l, are added in absolute

value, as opposed to ∂
∂z ( l ) g

(l) . This discrepancy is the result
of the dimensionality problem. Seeking synchronization of vi
in all r dimensions, one must take into account the effect that
the internal dynamics g have in all r dimensions. Due to lack
of structure on g, we have no choice but to regard the rate
at which g varies in different dimensions (h 
= l) as a purely
negative perturbation against the synchronization along the lth
dimension.

Theorem 4: Consider the initial value problem (6) with
Assumptions 2 and 3 to hold and its maximal solution
(x(t), v(t)), t ∈ [t0 , T ). Assume also that
(1) there exists d > 0 such that

S(v0) <
∫ d

S (x0 )

(
nψ(r) −K

)
dr

(2) there exist ε > 0 such that

nψ(d∗) ≥ K + ε

for d∗ > 0 : S(v0) =
∫ d∗

S (x0 )

(
nψ(r) −K

)
dr and K as in (8).

Then, (x, v) satisfies

S(v(t)) ≤ e−εtS(v0) & sup
t≥t0

S(x(t)) < d∗, ∀ t ∈ [t0 , T ).

The proof of the Theorem relies on the following result, the
proof of which is put in the Appendix:

Lemma 5: Let (x, v) be the maximal solution of (6), defined
in [t0 , T ). Then

d

dt
S

(
v(t)

) ≤ [
K − nψ

(
S(x(t))

)]
S

(
v(t)

)
(9)

for t ∈ [t0 , T ).
Proof of Theorem 4: Consider the functional

V(x, v) = S(v) +
∫ S (x)

0

(
nψ(r) −K

)
dr (10)

and evaluate it at the solution
(
x(t), v(t)

)
, t ∈ [t0 , T ) with

V(t) = V(
x(t), v(t)

)
. From (1.) there exists t1 > t0 such that

for t ∈ [t0 , t1)

d

dt
V(t) ≤ d

dt
S(v(t)) +

[
nψ

(
S(x(t)) −K

]
S

(
v(t)

) ≤ 0

in view of Lemma 5 and
d

dt
S(x(t)) ≤ S(v(t)).

The last claim is justified as follows: Note that S(x(t)) =
|x(l)
i (t) − x

(l)
j (t)|, for some i, j ∈ [n] and l ∈ [r] (possibly de-

pendent on t). Then

d

dt
S(x(t)) =

d

dt
|x(l)
i (t) − x

(l)
j (t)| ≤

∣∣∣∣
d

dt

(
x

(l)
i (t) − x

(l)
j (t)

)∣∣∣∣

= |v(l)
i (t) − v

(l)
j (t)|

≤ S(v(t))).

Consequently, V(t) ≤ V(t0) for t < t1 , equivalent to

S(v(t)) +
∫ S (x(t))

0
(nψ(r) −K) dr ≤

S(v0) +
∫ S (x0 )

0

(
nψ(r) −K

)
dr

and obviously
∫ S (x(t))

0
(nψ(r) −K) dr ≤ S(v0)+

∫ S (x0 )

0
(nψ(r) −K) dr.

Condition (1.) also implies the existence of d∗ < d as in condi-
tion (2.) the inequality above yields

∫ S (x(t))

0
(nψ(r) −K) dr ≤

∫ d∗

0
(nψ(r) −K) dr

so
∫ d∗

S (x(t))
(nψ(r) −K) dr ≥ 0.

The last inequality implies that S(x(t)) ≤ d∗ for t < t1 and
nψ(d∗) −K ≥ ε > 0. Since no assumption was taken on t1 ,
the monotonicity of ψ yields that we can take t1 = T proving
the second claim of the theorem. The differential inequality (9)
then yields the first claim, concluding the proof. �

This result establishes the connection between the internal
and the position-dependent coupling dynamics. The power of
Theorem 4 can be further extracted if we assume that the solution
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v is a priori trapped within a region that possibly depends on
the initial conditions. In such case, T = ∞ and the imposed
conditions can be checked more easily. The following result
asserts that for a particular type of compact subsets Rr into
which z of (7) remains trapped, implies that v in (6) behaves
likewise.

Theorem 6: Assume thatU is a compact, convex g-invariant
subset of Rr . Then v0

i ∈ U for i ∈ [n], guarantees that the solu-
tion (x, v) of (6) exists for all times. In addition, the results of
Theorem 4 hold true with K as in (8) substituted by

K = sup
t≥t0

max
y ,w∈U,l∈[r ]

K(t, l, y, w).

Proof: Consider the maximal solution (x(t), v(t)), t ∈
[t0 , T ) of (6). It suffices to show that vi(t0) = v0

i ∈ U implies
vi(t) ∈ U for all t ∈ [t0 , T ) and i ∈ [n]. Then T can be ex-
tended to ∞, establishing the solution (x, v) in the large. We
can discretize the second part of (6) as follows:

vi(t+ k)=vi(t) + k

[
g(t, vi(t)) +

n∑

j=1

wij (t)
(
vj (t) − vi(t)

)]

(11)
wherewij (t) = wij (t, x(t)), t ∈ [t0 , T ), and i ∈ [n]. The result
is then proved if we can show that vi(t+ k) ∈ U for k small
and arbitrary t ∈ [t0 , T ). The collection of the initial values
{v0

i } lies in U , and the convexity of U implies that the convex
hull of {v0

1 , . . . , v
0
n} is also a subset of U . Pick i ∈ [n] and let’s

elaborate on vi(t+ k) in (11), at t = t0 . By the g-invariance
property of U , one can discretize the uncoupled equation and
conclude that there is k

′
> 0 such that

vai (t0 + k) := v0
i + kg(t0 , v0

i ) ∈ U

for any k ∈ [0, k
′
). In addition, if on ignores the internal dy-

namics (i.e., g ≡ 0), Assumption 3 on the weights, implies that
there is k

′′
such that

vbi (t0 + k) := v0
i + k

n∑

j=1

wij (t0)(v0
j − v0

i ) ∈ U

for k ∈ [0, k
′′
). The latter claim is because the right-hand side

of the equation is a convex sum of {v0
i }, thus places vbi (t0 + k)

exactly in the convex hull of {v0
1 , . . . , v

0
n}, which, in turn, is in

U . We showed that both vai (t0 + k) and vbi (t0 + k) are points
in U for small enough k ∈ [0,min{k′

, k
′′ }). For U convex

U � 1
2
vai (t0 + k) +

1
2
vbi (t0 + k) = v0

i

+
k

2

[
g(t0 , v0

i ) +
n∑

j=1

wij (t0)(v0
j − v0

i )
]
.

Observe that the right-hand side is precisely this of (11) with
l = k/2 and t = t0 . We remark that in view of Assumptions 2
and 3, k

′
and k

′′
can be chosen independent of t0 or i so that the

argument remains valid for any t ∈ [t0 , T ) and i ∈ [n]. �
Remark 7: In Theorems 4 and 6, we assumed that every

agent has access to the states of the rest of the agents. This is
an all-to-all communication and it may be thought of as too de-
manding. The invoked argument allows for the following small

relaxation: We can ask for every two agents that do not commu-
nicate, the existence of a third agent with which both of them
must communicate. In this case, the estimates of Theorem 4 are
valid if nψ(r) in the initial condition assumption is substituted
by ψ(r).

B. Flocking With Guaranteed Collision Avoidance

The second dynamic model we will study rolls back to the
classic consensus problem and convergence to a common con-
stant value. Here the alignment should be achieved with agents
positioning themselves in at least a minimum distance from each
other. For this, we will study a special case of (5) with

b
(l)
ij (t, x, v)=− 1

S(v)
fij (‖xi−xj‖2)〈xi−xj , vi−vj 〉, l ∈ [r].

The protocol we propose is

ẋi = vi

v̇i =
n∑

j=1

(
wij (t, x)

− fij (‖xi − xj‖2)〈xi − xj , vi − vj 〉
S(v)

)
(vj − vi)

xi(t0) = x0
i , vi(t0) = v0

i ∈ Rr , given (12)

where wij as in Assumption 3 and the additional terms that
model the collision prevention mechanism. The functions fij
are repelling forces that can be appropriately constructed so as
to keep the agents at a prescribed relative distance.

Assumption 8: For any i 
= j, fij (·) is a continuous non-
negative function defined in (d0 ,∞), for some constant d0 > 0
such that

∫ d1

d0

fij (r) dr = +∞ and
∫ +∞

d1

fij (r) dr < +∞

for all d1 > d0 .
A simple example of symmetric repelling function (also to

be used in §IV) is f(r) = (r − d0)−ε for any fixed ε > 1. More
examples can be found in [4]. The objective of this section is
the derivation of sufficient conditions for flocking of (8). One
should expect a formula that connects the coupling strength with
the functions fij .

Theorem 9: Consider the initial value problem (12) with As-
sumptions 3 and 8 to hold, and its maximal solution (x(t), v(t))
for t ∈ [t0 , T ). If i 
= j implies ‖x0

i − x0
j ‖ > d0 and

S(v0)
n

<
1
2

∫ ∞

S (x0 )
ψ(r) dr − max

i 
=j

∫ ∞

‖x0
i −x0

j ‖2
fij (r) dr, (13)

then
1) T = ∞,
2) ‖xi(t) − xj (t)‖ > d0 , for all t ≥ t0 ,
3) the solution satisfies

S(v(t)) → 0 as t→ ∞ and sup
t≥t0

S(x(t)) <∞.
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The proof of Theorem 9 follows partly the steps of the proof
of Theorem 4 and partly the arguments developed in [4].1

We begin with a preliminary result that establishes a solution
estimate of v similar to Lemma 5. Both the preliminary and the
main results rely on the following observation.

Remark 10: Note that bij (t, x, v) can be written as

bij (t, x, v) =
1

2S(v)
d

dt

∫ ∞

‖xi (t)−xj (t)‖2
fij (r) dr. (14)

Given a solution (x, v) of (12) defined in t ∈ [t0 , T ) we set
h = ht and h

′
= h

′
t ∈ [n] the agents that lie closes to each other,

that is, the indices that minimize ||xi − xi ′ ||. While this mapping
may not be unique, it is a piece-wise constant function of t.

Lemma 11: The maximal solution (x, v) of (12) defined in
[t0 , T ) satisfies for all i, i

′ ∈ [n] and l ∈ [r]

d

dt

∣∣v(l)
i − v

(l)
i′

∣∣ ≤ −m∣∣v(l)
i − v

(l)
i′

∣∣ + (m− ρi,i′ )S(v) − Γi,i′

(15)
where m = m(t) is an arbitrary but fixed, non-negative, inte-
grable function, ρi,i′ =

∑n
j=1 min{wij (t, x(t)), wi ′ j (t, x(t))}

and

Γi,i′ =
1
2

∑

j 
=i
min

{
d

dt

∫ ∞

||xi−xj ||2
fij (r) dr,

d

dt

∫ ∞

||x
i
′ −xj ||2

fi ′ j (r) dr
}
.

The proof of Lemma 11 is put in the Appendix. When i and
i
′

are chosen so as to maximize maxl |v(l)
i − v

(l)
i′
| = S(v) then

one obtains the estimate

d

dt
S(v) ≤ −ρi,i′S(v) − Γi,i′ . (16)

Proof of Theorem 9: For the reader’s convenience, we make
the proof to consist of the following four steps: Collision avoid-
ance conditions for the maximal solution, existence of the max-
imal solution for all times, persistent connectivity of the flock,
and asymptotic velocity alignment.

a) Collision Avoidance: Define E : Rnr × Rnr → R

E(x, v) = S(v) + |v(l)
h − v

(l)
h ′ | +

n∑

j=1

γi,i
′

j +
n∑

j=1

γh,h
′

j

where l ∈ [r] arbitrary but fixed, h, h
′ ∈ [n] are as in Remark

10, i, i
′ ∈ [n] are chosen to maximize the velocity diameter, and

consequently satisfy (16), and finally

γi,i
′

j = γi,i
′

j (x, v) =
∫ ∞

||xk −xj ||2
fkj (r) dr with k = ki,i′ :

fkj (||xk − xj ||2)〈xk − xj , vk − vj 〉
= min

{
fij (||xi − xj ||2)〈xi − xj , vi − vj 〉,

fi ′ j (||xi ′ − xj ||2)〈xi ′ − xj , vi ′ − vj 〉
}
.

1In fact Theorem 9 may be considered as the asymmetric alternative of [4].

All of these indices are potentially time dependent but piecewise
constant. Differentiating E along (x(t), v(t)), t ≥ t0 , Lemma 11
for m(t) = ρi,i′ (t, x(t)) and (16) will yield

d

dt
E(x(t), v(t)) = − ρi,i′S(v) − Γi,i′ − ρi,i′ |v(l)

h − v
(l)
h ′ |

+
(
ρi,i′ − ρh,h ′

)
S(v) − Γh,h ′

+
d

dt

n∑

j=1

γi,i
′

j (x(t), v(t))

+
d

dt

n∑

j=1

γh,h
′

j (x(t), v(t))

= − ρi,i′ |v(l)
h − v

(l)
h ′ | − ρh,h ′S(v) ≤ 0.

Note that

either
∫ ∞

‖xh (t)−xh ′ (t)‖2
fhh ′ (r) dr or

∫ ∞

‖xh (t)−xh ′ (t)‖2
fh ′h(r) dr

is a member of the sum
∑

j γ
h,h

′

j . Then, E(t) ≤ E(t0) implies
that for the two agents h and h′ that are in closest distance from
each other

min
{ ∫ ∞

‖xh (t)−xh ′ (t)‖2
fhh ′(r) dr,

∫ ∞

‖xh (t)−xh ′ (t)‖2
fhh ′(r) dr

}

≤ E(t) ≤ E(t0) <∞.

Since both fhh ′ and fh ′h satisfy Assumption 8, we proved that
‖xi(t) − xj (t)‖ ≥ d∗ for some d∗ > d0 for all i 
= j ∈ [n] and
t ∈ [t0 , T ).

b) Existence in the Large: From E(t) ≤ E(t0), we also deduce
that S(v(t)) ≤ E(t0) <∞ hence

S(x(t)) ≤ S(x0) + TE(t0) := X̄

and the solution lies for [t0 , T ) in

Ω = {(x, v) : S(x) ≤ X̄, ‖xi,j‖ ≥ d∗, i 
= j, S(v) ≤ E(t0)}
where d∗ defined in the first part of the proof. However, Ω is a
compact subset of

{(x, v) : S(x) ≤ X̄, ‖xi,j‖ > d0 , i 
= j}.
The fundamentals in the theory of differential equations assure,
however, that this cannot occur if T <∞ (see for example [14,
Th. 1.21]) hence, it is ensured that the solution is eventually
defined for all t ≥ t0 .

c) Bounded Flock: We recall from the first step that

d

dt
E(x(t), v(t))≤−ρi,i′ |v(l)

h −v(l)
h ′ |−ρh,h ′S(v)≤−ρh,h ′S(v).

If we integrate from t0 to t and use the lower bound of ρh,h ′

taken in view of Assumption 3, we obtain

E(t) − E(t0) ≤ −
∫ t

t0

nψ
(
S(x(r))

)
S(v(r)) dr ⇒

E(t0) ≥
∫ t

t0

nψ
(
S(x(r))

)
S(v(r)) dr. (17)
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If we set p(s) = S(x(s)), we observe that dp
ds ≤ S(v(s)) and

deduce
∫ S (x(t))

S (x0 )
nψ(s) ds ≤ E(t0).

Had the flock been dissolved, there should be a sequence {ti}i≥0
with ti → ∞ as i→ ∞, so thatS(x(ti)) → ∞ as ti → ∞. This
would mean that

∫ ∞

S (x0 )
nψ(r) dr ≤ E(t0)

≤ 2S(v0) + 2nmax
i 
=j

∫ ∞

||x0
i −x0

j ||2
fij (r) dr

that is not possible in view of (13). Thus

sup
t≥t0

S(x(t)) <∞ (18)

that is, the flock remains connected.
d) Convergence to Flocking: At first, we combine (17) and

(18) to conclude
∫ ∞

S(v(r)) dr <∞.

Moreover, we used d
dt E(x(t), v(t)) < 0 to show that

supt≥t0 S(v(t)) < E(t0) and this implies that |S(v(t))| is uni-
formly bounded. It only remains to show that S(v(t)) is uni-
formly continuous so that Barbalat’s Lemma ([12, Lemma 8.2])
applies to k(t) :=

∫ t

t0
S(v(s)) ds to conclude

k̇(t) = S(v(t)) → 0 as t→ ∞.

The last condition is shown by direct application of the definition
of uniform continuity: For any t1 , t2 ≥ t0 close to each other,
there exist i, i′ ∈ [n] and l ∈ [r] such that

|S(v(t1)) − S(v(t2))|
= |(v(l)

i (t1) − v
(l)
i′ (t1)) − (v(l)

i (t2) − v
(l)
i′ (t2))|

≤ 2 max
h∈{i,i′}

|v(l)
h (t1) − v

(l)
h (t2)|

≤ 2 max
h∈{i,i′}

|v̇(l)
h (t∗)| · |t1 − t2 |.

Since v̇
(l)
h (t) satisfies (12), its absolute value is bounded

above by finite number of terms |wij | ≤ w, |bij (x, v)| ≤
maxij fij (d2)

(
supt S(x(t)))2E(t0) where d = inf t≥t0 mini 
=j

|xij (t)| > d0 and |S(v(t))| ≤ E(t0), each of which is indepen-
dent of time and the uniform continuity property holds true.
Barbalat’s lemma can then be applied concluding the proof. �

IV. EXAMPLES AND SIMULATIONS

In this section, we present applications of our rigorous results.
We will use a group of n = 5 and examine networks of different
dimensions and types of solutions. The initial time is set at

Fig. 1. Stability condition curves for different values of S(x0 ). The
larger the initial spread of the relative positions, the weaker the couplings
initially are.

t0 = 0. The coupling rates are setwij (t, x) = w 1.5+0.5 sin(t)
(|x|+β 2

i j )δ for

δ ≥ 0, βij ∈ (0,
√

2) and w ≥ 0 a uniform control parameter.2

A. Scalar Networks

We consider (7) with g(t, z) = cos(t)(z − 1)(z − 2). Its so-
lution z(t) = z(t, 0, z0), t ≥ 0 is

z(t) =
2 − z0 −2

z0 −1 e
sin(t)

1 − z0 −2
z0 −1 e

sin(t)
.

It can be easily checked that for z0 ∈ (1, 2) the solution exists
for all times and is periodic with period 1. We consider now
the network (6) and its maximal solution (x, v) with initial
setup v0 = (1.2, 1.4, 1.1, 1.5, 1.3). We selectw = 1 throughout
this example. The solution (x, v) exists for all times remaining
trapped in U = [1, 2] but we can in fact say much more. Due
to the monotonicity of solution z, using the same arguments
as in the proof of Theorem 6, we can calculate the estimate
K by evaluating it over z(t, 0, 1.5), since no solution vi will
essentially exceed z(t, 0, 1.5). Thus we estimate K as

K ≤ 2
2 + esin(t)

1 + esin(t) − 3 ≤ 1 − e−1

1 + e−1 ≈ 0.462.

In addition, wij (t, x) ≥ 1
(|x|+2)δ . From the conditions of Theo-

rem 6, exponential convergence to flocking with rate ε > 0 can
occur if we can find number d such that

0.4 < 5
(d+ 2)(1−δ) − (S(x0) + 2)(1−δ)

1 − δ
− 0.462(d− S(x0))

and
5

(d∗ + 2)δ
− 0.462 > 0

for d∗ that after substituting it to d, it can achieve equality in
the first condition. At δ = 0, one can easily verify that the first
condition holds true for every d∗ and that the first inequality is
always satisfied for d large enough.

As a brief numerical exploration we took S(x0) = 1, 3, 5 and
examined the two conditions one after the other. The results
are plotted in Fig. 1 and suggest that all the conditions can be
satisfied for δ < 1.1. Fig. 2 presents realizations of (x, v) with

2All simulations are carried with the ode23 routine in MATLAB.
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Fig. 2. Realization of (x, v) of Example 1 with δ = 10, δ = 4, and δ =
0.9. The first column presents vi , i ∈ [5] and the second column presents
the differences |xi − xj |, i < j.

S(x0) = 5. The first simulation depicts a network with the weak
coupling δ = 10, where no synchronization can happen. In the
second attempt, we adopt a stronger coupling with δ = 4 that,
however, still does not yield a feasible d to satisfy our conditions.
Finally for δ = 0.9, we can see synchronization of solutions that
occur exponentially fast.

B. Example 2. Chaotic Flocking

The next example is on the problem of synchronizing chaotic
oscillators. The nominal equation is chosen to be the Lorenz
system

g(z(1) , z(2) , z(3)) =

⎡

⎢⎢⎣

10(z(2) − z(1))

−z(2) + z(1)(28 − z(3))

−8
3
z(3) + z(1)z(2)

⎤

⎥⎥⎦ .

The solutions of (7) converge for almost all initial values to a
strange attractor [30]. This means that there is a g-invariant,
convex subset U ⊂ R3 that includes the limit set. It can
be verified that U ⊂ Ũ = [−17, 17.5] × [−22, 24.5] × [7, 45].
Furthermore, Ũ can be numerically verified to be g-invariant
while it is clearly compact and convex. We can apply Theo-
rem 6 to (6) with g as in this example and initial conditions
in v0

i ∈ Ũ , i ∈ [5]. Then, we can calculate an estimate on K

Fig. 3. Simulation Example 2. Synchronization of chaotic oscillators
with r = 3. In the first two figures, we observe extremely strong synchro-
nization under the theoretical sufficient conditions, w = 150 and δ = 0.5.
In the two figures that follow, we present loose coupling with the same
w and δ = 7. We observe the failure of our network to synchronize.

based3 on U

K ≤ max
z∈Ũ

{
0, |28 − z(3) | − 1 + |z(1) |, |z(2) | + |z(1) |

− 8
3

}
≈ 39.4

We set S(v0) = S(x0) = 9 and Theorem 6 applies if one can
find d such that

9 <
∫ d

9

(
5w

(r + 2)δ
− 39.4

)
dr and

5w
(d∗ + 2)δ

− 39.4 > 0

where d∗ when substitutes d in the first condition achieves equal-
ity. Note that for any δ small enough one can always find d∗ such
that

9 + 39.4(d∗ − 9) > 39.4(d∗ + 2)δ
∫ d∗

9

dr

(r + 2)δ
.

This is a relation after solving forw in the first condition (that is
an equality for d = d∗) and substituting in the second condition.
If, for example we take δ = 0.5, then the last condition is sat-
isfied with d∗ = 11.67 and w ≈ 150. Fig. 3 depicts our results
for strong δ = 0.5 and loose δ = 7 coupling, respectively. The
rest of the parameters w and initial configurations were kept
identical. These two illustrative choices represent the case that
conditions of Theorem 6 are met and when the conditions are
violated, respectively.

C. Example 3. Collision Avoidance

We conclude this section with an illustration of Theorem 9.
We consider the network (12) with r = 2. The repelling func-

3Clearly, better estimates on K may be achieved when Ũ is substituted with
a sharper estimate of U .
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Fig. 4. Simulation Example 3. Flocking with collision avoidance. The
first column is a strong coupling simulation of the velocity curves, the
maximum distance, and the minimum distance. The second column is a
weak coupling simulation with the same quantities. While both simula-
tions achieve collision avoidance, only the first one achieves flocking.

tions are taken

fij (r) =
Cij

(r − r0)ϕ

for numbers Cij arbitrarily chosen from (1, 2), ϕ = 1.5, and
r0 = 0.25. Our initial data are S(v0) = 6 and S(x0) = 4.
The first simulation runs with δ = 1 so that the condition of
Theorem 9 is clearly satisfied and asymptotic flocking with col-
lision avoidance is achieved. See Fig. 4 for the simulation results.
The repelling functions destabilize the agents’ velocities in an
uncontrollable manner. It then takes the strength of the cou-
pling networks to determine the stability of flocking solutions.
In the first case, δ = 1 ensures the stability because it makes the
right-hand side of condition of Theorem 9 unbounded.

V. DISCUSSION

We addressed two variations of the classic nonlinear flock-
ing algorithm of Cucker–Smale type with asymmetric coupling
rates. The striking similarity in the analysis of these two evi-
dently different algorithms is clear: Both networks include the
consensus-based stabilizing term and a potentially destabilizing
term. The perturbations affect the stability of the network be-
cause it leads to fluctuations in the relative velocities vi − vj .
This, in turn, results in weaker coupling strength, the level of
which can dissolve the network to fail to converge to consensus.
This interplay is reflected in the initial configuration sufficient

conditions that ensure convergence of the overall network to
flocking behavior.

Nonlinearity imposes investigation of solutions that may not
exist for all times. Theorem 4 accepts in principal such solu-
tions. Since this event is of little interest to stability problems,
Theorem 9 concerns nominal systems with solutions that exist
for all times.

We focused on reasonable forms of bij that correspond to
real-world mathematical models. It is yet to be investigated
what type of dynamics emerge with abstract nonlinear pertur-
bations. One could reasonably assume that positive valued bij ’s
in (5) tend to stabilize the network toward a common constant
equilibrium, while negative valued perturbation destabilize the
network possibly toward more complex behavior.

A. Further Nonlinearities

Models (6) and (12) can be easily extended to nonlinearities
in the spirit of (1.2) or (1.3). In this case, one would require
additional assumptions on the type of these nonlinearities. For
instance, note that (1.3) can be rewritten as

żi =
n∑

j=1

wij (t, z)(zi − zj )

where wij (t, z) =
∫ 1

0
∂
∂z wij (t, qzi − (1 − q)zj ) dq. Then, typ-

ical smoothness or uniformity assumptions on the nonlinearwij
can make a second order version possible to be analyzed with
our framework, under appropriate modifications. Similar argu-
ments can be adopted for couplings like (1.2).

B. Problem of Dimensionality

For dynamics in one dimension, all metrics boil down to the
absolute value making the analysis simple and elegant. In higher
dimensional systems, one must carefully choose the most appro-
priate metric that suits the geometry of the generated solutions.
Our analysis dictates the option of S(y) and any discrepancy
with the solutions of the nominal dynamics may result in more
conservative convergence conditions (i.e., larger K). Attempts
toward sharper sufficient conditions should probably allow some
structure on the nominal dynamics g. In this case, the researcher
can leverage on the geometry of the nominal solutions and their
qualitative properties so as to come up with an appropriate con-
traction metric for the synchronization analysis.

C. Connection Topologies

A careful inspection of (4) reveals that the contraction coeffi-
cient that provides nontrivial estimates of the stochastic matrix
P , must be associated with a graph that is rich in edges. In
particular, it is asked that for every couple of two agents, there
is at least one agent that affects both of the aforementioned
two. The connectivity we assumed in this paper corresponds to
a complete graph and clearly covers this case. The interest in
networks of Cucker–Smale type lies primarily on the strength of
the coupling weights and not on the topological structure. That
is why they are usually assumed under all-to-all communication
schemes. Looser connectivities are feasible for the synchro-
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nization network (6) but it involves more elaborate arguments,
perhaps along the lines of [27]. This problem remains of interest
to us and it will be considered in the future.
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APPENDIX

Proof of Lemma 5: Let (x(t), v(t)), t ∈ [t0 , T ) the max-
imal solution of (6). Fix i, i

′ ∈ [n], l ∈ [r] and take m =
n̄w +K, where n̄ any number greater than n and w as in
Assumption 3. From the second line of (6), we have

v̇
(l)
j = −mv(l)

j +
(
m− dj

)
v

(l)
j +

n∑

k=1

wjkv
(l)
j + g(l)(t, vj )

for j = i, i
′
, wjk = wjk

(
t, x(t)

)
, dj =

∑
k 
=j wjk . Set

Δi,i′ (t) = e−m (t−t0 ) d
dt

(
em (t−t0 ) [v(l)

i (t) − v
(l)
i′

(t)]
)

and substi-

tuting the equations on i and i
′
we obtain

Δi,i′ (t) =
n∑

k=1

(w̃ik − w̃i ′k )v
(l)
k +

+
∑

h 
= l

[ ∫ 1

0

∂

∂z(h) g
(l)(t, qvi + (1 − q)vi ′) dq

](
v

(h)
i − v

(h)
i′

)

where w̃ij = w̃ij (t, l) defined as

w̃ij =

{
m− di + ci,i′ , j = i

wij , j 
= i.

for ci,i′ =
∫ 1

0
∂

∂z ( l ) g
(l)(t, qvi(t) + (1 − q)vi ′ (t)) dq. Similarly

for w̃i ′ j . Take aj = (w̃ij − w̃i ′ j ) and observe that

n∑

j=1

aj =
∑

j 
=i
wij + wii −

∑

j 
=i′
wi ′ j − wi ′ i ′

= di +m− di + ci,i′ − di ′ −m+ di ′ − ci,i′ = 0.

The index j for which aj > 0 is denoted by j+ and the index
for which aj ≤ 0 is denoted by j−. Set θ = θ(t)

θ =
∑

j+

aj+ =
∑

j+

|aj+ | = −
∑

j−
aj− =

∑

j−
|aj− |

=
1
2

n∑

j=1

|aj | =
1
2

n∑

j=1

|w̃ij − w̃i ′j |

Then for t ∈ [t0 , T )

Δi,i′ (t) = θ

(∑
j+ |aj+ |vj+

θ
−

∑
j− |aj− |vj−

θ

)

+
∑

h 
= l

[ ∫ 1

0

∂

∂z(h) g
(l)(t, qvi + (1 − q)vi ′) dq

](
v

(h)
i − v

(h)
i′

)

≤
(
θ +

∑

h 
= l

∣∣∣∣
∫ 1

0

∂

∂z(h) g
(l)(t, qvi + (1 − q)vi ′) dq

∣∣∣∣

)
S(v)

But from the identity |x− y| = x+ y − 2min{x, y} and the
particular m we chose, it can be deduced that

θ = m+ ci,i′ −
∑

k 
=i,i′
min{wik (t), wi ′k (t)}.

So that

Δi,i′ (t) ≤
(
m+K −

∑

k 
=i,i′
min{wik (t), wi ′k (t)}

)
S(v).

Finally, for i, i′ and l that maximize |v(l)
i (t) − v

(l)
i′ (t)|, we have

d

dt
S(v(t)) =

d

dt

[
e−m (t−t0 )S

(
em (t−t0 )v(t)

)]

= −mS(v(t)) + Δi,i′ (t)

≤ [
K − nψ

(
S(x(t))

)]
S

(
v(t)

)
.

that is true for t ∈ [t0 , T ). �
Proof of Lemma 11: Consider the maximal solution(

x(t), v(t)
)

on [t0 , T ). In any l ∈ [r] dimension, v(l)
i satisfies

v̇i = −mvi + (m− di)vi +
n∑

j=1

(wij + bij )vj

where wij = wij (t, x(t)), bij = bij (t, x(t), v(t)) as in (14),
di = di(t) =

∑
j (wij + bij ) and m = m(t) to be determined

below. Note that we removed the l dependency because the dy-
namics are identical in all [r] dimensions. We set φ(t, t0) =
exp{∫ t

t0
m(s) ds}. Following the proof of Theorem 4,

Δi,i′ (t) := φ−1(t, t0) d
dt

[
φ(t, t0)|vi(t) − vi ′ (t))|

]
, yields

Δi,i′ (t) =
∑

j

αj vj

for

αj =

⎧
⎪⎨

⎪⎩

(wij − wi ′j ) + (bij − bi ′j ), j 
= i, i
′

m− di − wii′ − bi ′i , j = i,

−m+ di ′ + wi ′i + bii′ , j = i
′
.

Let j′ denote the indices j for which αj > 0 and j′′ the indices
for which αj ≤ 0. Then

Δi,i′ (t) =
∑

j ′
|αj ′ |vj ′ −

∑

j ′′
|αj ′′ |vj ′′ .

Again, it holds that
∑

j αj ≡ 0, so we take θii′ = θii′ (t) to be
the sum of the positive αj

θii′ =
∑

j ′
|αj ′ | = −

∑

j ′′
αj ′′ =

∑

j ′′
|αj ′′ | =

1
2

∑

j

|αj |

≤ 1
2

n∑

j=1

|wij − wi ′j | + 1
2

n∑

j=1

|bij − bi ′j |

= m−
∑

j 
=i
min{wij , wi ′j} −

∑

j 
=i
min{bij , bi ′j}

in view of the identity 2min{x, y} = x+ y − |x− y|.

Δi,i′ (t) = θ

(∑
j ′ |wj ′ |vj ′∑
j ′ |wj ′ |

−
∑

j ′′ |wj ′′ |vj ′′∑
j ′′ |wj ′′ |

)
.
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Invoking the estimate on θ

Δi,i′ (t) ≤
(
m−

∑

j 
=i
min{wij , wi ′j} −

∑

j 
=i
min{bij , bi ′j}

)
S(v)

=
(
m− ρi,i′

)
S(v) − Γi,i′

where ρi,i′ , Γi,i′ as in the statement of the Lemma. Observe

that d
dt |vi(t) − vi ′ (t)| = −m|vi − vi ′ (t)| + Δi,i′ (t) and substi-

tute the estimate of Δi,i′ (t) to conclude. �
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