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Aggregate Fluctuations in Networks with
Drift-Diffusion Models Driven by Stable

Non-Gaussian Disturbances
Christoforos Somarakis and Nader Motee

Abstract—The focus of this paper is to quantify measures of
aggregate fluctuations for a class of consensus-seeking multi-
agent networks subject to exogenous noise with α-stable dis-
tributions. This type of noise is generated by a class of random
measures with heavy-tailed probability distributions. We define a
cumulative scale parameter using scale parameters of probability
distributions of the output variables, as a measure of aggregate
fluctuation. Although this class of measures can be characterized
implicitly in closed-form in steady-state, finding their explicit
forms in terms of network parameters is, in general, almost
impossible. We obtain several tractable upper bounds in terms of
Laplacian spectrum and statistics of the input noise. Our results
suggest that relying on Gaussian-based optimal design algorithms
will result in non-optimal solutions for networks that are driven
by non-Gaussian noise inputs with α-stable distributions.

Index Terms—Consensus, Heavy-tailed noise, Performance
Measures, α-stable processes, p-norm.

I. INTRODUCTION

THe level of complexity in modern real-world networks
can make them vulnerable to enviromental or structural

disturbances often with severe, if not catastrophic, conse-
quences. Recent crises in various sectors of our society show
specific frailties of dynamical networks due to weaknesses in
their structures, e.g., the air traffic congestion problem [1],
power outages [2], the financial crisis of 2008 (see Ch. 17-18
in [3]) and other major disruptions.

Thus the problem of performance and robustness in high
dimensional networks is pivotal in designing inter-dependent
systems that withstand negative effects of disturbances. Appli-
cation areas include, but are not limited to, co-operative control
of multi-agent systems, collaborative autonomy, transportation
networks, power networks, metabolic pathways and financial
networks (see for example [4], [5] and references therein).

Standard models of uncertainty in dynamic processes as-
sume underlying probability distributions with well-defined
first and second moments. A particularly prominent example
is this of white noise, where the underlying distribution is
Gaussian. Its main advantage is classic theory of stochastic dif-
ferential equations (SDE) [6], that provides clean and tractable
results. This gives rise to Engineers to leverage Gaussian-
induced sources of perturbation on networked control systems
and design optimal structures that mitigate undesirable noise-
related effects [7], [8], [9], [10].
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Despite elegant formulation, systems perturbed by purely
Gaussian perturbations have attracted considerable criticism.
The primary dispute relies on the claim that Gaussian approx-
imations fail to model real-world uncertainty that occasionally
exhibits susceptibility to large and unexpected events [11],
[12], [13].

A. Shortcomings of Gaussian Assumptions

Systems perturbed by white noise generate stochastic pro-
cesses that fluctuate around the expected (unperturbed) value
in an amorphous yet highly regularized manner. The resulting
dynamics essentially preserve the Gaussian nature of pertur-
bations, along with its light-tailed property. Thus, there is
no reasonable possibility for abrupt and outlying values to
emerge, in other words faithful signs of large and unexpecrted
fluctuations, or shocks, in the network. As explained in [11],
shock events are ubiquitous in real world situations. Fur-
thermore, they are identified as such, if they lie outside the
realm of regular expectations, carry an extreme impact and
have likelihood of happening. It is precisely the light-tailed
property of Gaussian measures that hinders realistic possibility
of shocks. To gain a better understanding, the qualitative
difference in a solution trajectory perturbed by light-tailed
and a solution trajectory perturbed by heavy-tailed noise, is
illustrated in Figure 1.

B. Related Literature & Contributions

Mathematical models driven by non-Gaussian and heavy-
tailed disturbances have been proposed in various disciplines
[14], [15]. To the best of our knowledge, control community
lacks relevant studies and results, with the exception of [16].

In this paper, we develop the theoretical framework of
heavy-tailed consensus seeking networks. These are types of
drift-diffusion stochastic differential equations, driven by α-
stable noise. The drift (deterministic) part is selected to be
an average consensus protocol. This is the standard control
law for asymptotic agreement over agents and it enjoys last-
ing interest in problems of cooperative dynamics, formation
control, distributed computation and optimization [17]. The
diffusion part consists of additive α-stable random measures
that model noise as exogenous disturbance on the unperturbed
(drift) dynamics.

The objective of our work to lay the groundwork analysis
of this class of systems. It is found that the systemic (i.e.,
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Fig. 1: Simulation of output dynamics of system (7) for
n = 7 agents, in the face of white (α = 2) and heavy-tailed
(α < 2) noise inputs. The latter type of perturbations results
in dynamics with jumps that represent, more realistically, the
effect of shocks on the nominal process.

network-wide) response towards this class of noise is quantita-
tively and qualitatively different when compared to gaussian-
induced systemic fluctuations. Furthermore we highlight the
perplexed interplays between network topology and noise
as a means to understand the manner with which shocks
are propagated through the network, affecting its ability to
remain in equilibrium. In particular, we introduce a measure to
quantify aggregate flcutuation for networks driven by α-stable
noise. We derive an implicit formulation of the metric for
system outputs and we explore its basic properties. Moreover,
we highlight its connection with the H2-based performance
measure for linear systems with white-noise inputs [9] as well
as with other p-metrics. Explicit expression of the systemic
performance metric appears to be generally impossible. Ex-
ceptions are communication topologies with uniform, all-to-all
connectivity or purely gaussian noise perturbations. For this
reason we obtain tractable bounds of the performance metric
which we believe to be useful in network design problems.
Numerical examples are discussed and validate our theoretical
results. We suggest that H2-based design algorithms are not
only incompatible for the case of heavy-tailed disturbances,
but they also deliver sub-optimal topologies. It is acknowl-
edged that the present work is an outgrowth of [18]. This
version considers more general (i.e. not necessarily symmetric)
α-stable random measures, and it includes detailed proofs of
technical results.

II. PRELIMINARIES

By Rn we denote the n-dimensional Euclidean space, with
elements x =

[
x(1), . . . , x(n)

]T ∈ Rn. For any x ∈ Rn,

‖x‖p := p

√∑
j |x(j)|p, for p > 0. The fundamental property

on the equivalence of norms in Rn:

‖x‖p ≤ ‖x‖r ≤ n
1
r−

1
p ‖x‖p for p > r > 0.

Given a probability space (Ω,F ,P) we say that a random
variable z(ω) : Ω → R follows a stable distribution, and we
write

z ∼ Sα(σ, β, µ),

if there exist parameters 0 < α ≤ 2, σ ≥ 0, −1 ≤ β ≤ 1 and
µ ∈ R, such that its characteristic function is of the form:

φz(θ) = E
[
eiθz

]
= exp

{
σα
(
− |θ|α + iθω(θ, α, β)

)
+ iµθ

}
where ω(θ, α, β) stands for the function

ω(θ, α, β) =

{
β|θ|α−1 tan πα

2 , α 6= 1

−β 2
π ln |θ|, α = 1.

The parameter α is called the stability index of the distribution.
Parameter α basically characterizes the impulsiveness (i.e.
frequency and magnitude) of the shocks. The parameter σ
is the scale of the distribution and it is closely related to
the standard deviation: The larger the scale parameter is, the
more spread out the distribution becomes. Parameter β is
the skeweness of the distribution, an indicator of asymmetry.
Finally, µ is the shift of the distribution and it plays the role
of the mean value1. The following results summarize basic
properties of stable random variables. They are drawn from
[19] and stated below as Propositions 1, 2 and 3 to enhance
readability and keep our manuscript self-contained.

Proposition 1. Let z ∼ Sα(σ, β, µ). It holds that:

1. For any a ∈ R, z + a ∼ Sα(σ, β, µ+ a).

2. For any a 6= 0

az ∼

{
Sα
(
|a|σ, sgn(a)β, aµ

)
, α 6= 1

Sα
(
|a|σ, sgn(a)β, aµ− 2a ln(|a|)σβ

)
, α = 1

3. If α < 2

E
[
|z|p
]{<∞, for 0 < p < α

=∞, for p ≥ α

In addition, if µ = 0, and β = 0 only if α = 1, it holds

E[|z|p] = cpσp,

where c = c(α, β, p) =
(
E[|z0|p]

) 1
p for z0 ∼ Sα(1, β, 0).

A closed form expression of constant c is reported in [19]. Its
most remarkable property is its limit at α:

lim
p→α−

c(α, β, p) =

{
+∞, α < 2√

2, α = 2
for all β ∈ [−1, 1].

Proposition 2. Let zi ∼ Sα(σi, βi, µi), i = 1, 2 be indepen-
dent. Then

z1 + z2 ∼ Sα
(

(σα1 + σα2
) 1
α ,
β1σ

α
1 + β2σ

α
2

σα1 + σα2
, µ1 + µ2

)
.

1see Property 1.2.19 in [19].
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The random variable z ∼ Sα(σ, 0, 0) is called symmetric α-
stable, for which we write z ∼ SαS. Its characteristic function
takes the form

φz(θ) = e−σ
α|θ|α .

A finite collection of α-stable random variables zi ∼
Sα(σi, βi, µi), i = 1, . . . , d can form an α-stable vector
z =

[
z(1), . . . , z(d)

]T
.

A scalar-valued stochastic process {zt, t ∈ [0,∞]} is stable
if all its finite dimensional distributions are stable. A nominal
example is this of α-stable Lévy process z = {zt, t ≥ 0}
with the properties:

[1.] z(0) = 0 a.s.

[2.] z attains independent increments

[3.] zt − zs ∼ Sα
(
(t− s)1/α, β, 0

)
, for 0 ≤ s < t <∞.

A vector valued α-stable random process z = {zt}t with
zt =

[
z

(1)
t , . . . , z

(d)
t

]T
, t ≥ 0 is a family of α-stable vectors

parametrized by t.

Stable Integrals. The building blocks of stable integrals are
random measures. Let (Ω,F , P ) be a probability space and
L0(Ω) the set of all real random variables defined on it. Let
also (B,B,m) be a measure space. Take β : B → [−1, 1] a
measurable function and B0 ⊂ B that contains sets of finite
m-measure.

Definition 1. A set function M : B0 → L0(Ω) is a random
measure, if it satisfies the following properties:

I. It is independently scattered, i.e. for any finite collection
of disjoint sets A1, . . . , Ak ∈ B0, the random variables
M(A1), . . . ,M(Ak) are independent.

II. It is σ-additive on B0.

III. For every A ∈ B0,

M(A) ∼ Sα
(

(m(A))1/α,

∫
A
β(y)m(dy)

m(A)
, 0

)
The next example establishes an intimate connection between
random measures and stable processes.

Example 1. Let M be an α-stable random measure on(
[0,∞),B

)
with m(dx) = 1

αdx and constant skewness density
β, 0 ≤ x <∞. The process Z = {Zt, t ≥ 0} defined through
Zt = M([0, t]), 0 ≤ t <∞ is an α-stable Lévy motion.

The stable integral defined as

I(f) :=

∫
B

f(y)M(dy)

are taken over integrands that are members of

Fα =

{
f ∈ B :

∫
B

|f(y)|αm(dy) <∞
}
. (1)

Proposition 3. The integral I(f) attains the properties:

1. I(f) ∼ Sα(σf , βf , µf ) with σαf =
∫
B
|f(x)|αm(dx),

βf = β
σf

∫
B
f(x)<α>m(dx), and

µf =

{
0, α 6= 1

− 2
πβ
∫
B
f(x) ln |f(x)|m(dx), α = 1.

The notation q<α> stands for

q<α> =

{
|q|α if q > 0,

−|q|α if q < 0.

2. I(a1f1 +a2f2) = a1I(f1) +a2I(f2), for any f1, f2 ∈ Fα,
and constants a1, a2 ∈ R.

Example 2. Let the α-stable random measure M of Example
1. Then f(x) = e−λx, λ > 0, clearly belongs to Fα, α ∈
(0, 2]. For fixed t > 0, the integral∫ t

0

e−λ(t−s)M(ds) ∼ Sα(σ, β, µf )

defines a stable process so that for σα = 1−e−αλt
α2λ , βf = β and

µf = − 2
πβ
[
te−λt − 1

λ (1− e−λt)
]

if α = 1 and 0, otherwise.
At t → ∞ the stable integral converges, in distribution, to
Sα
(

1
α
α√
λ
, β, 0

)
for α 6= 1 or S1

(
1
λ , β,

2
πβ
)
.

Algebraic Graph Theory. The vector of all ones is denoted by
1 and the n× n centering matrix is

Mn := In −
1

n
11T .

An undirected weighted graph G is defined by the triple G =
(V, E , w), where V is the set of nodes of G, E is the set of
links of the graph, and w : E → R+ is the weight function
that maps each link to a non-negative scalar aij . The matrix
L = [lij ] with

lij =

{
−aij , i 6= j∑n
j=1 aij , i = j

is the Laplacian matrix of G. The following condition holds
true throughout the paper.

Assumption 1. The coupling graphs of all networks consid-
ered in this paper are simple, undirected, and connected.

A number of important consequences immediately follow. At
first, aij = aji for all i, j ∈ V that makes L symmetric. Then
its eigenvalues are real and they can be ordered as

0 = λ1 < λ2 ≤ · · · ≤ λn.

Furthermore, L can be represented as L = QΛQT , where
Λ = diag(λ1, . . . , λn) and Q = [q1 | . . . | qn] is a matrix
the ith column of which is corresponds to the eigenvector
associated with the eigenvalue λi of L. Finally, {qi}i∈[n] can
be chosen to satisfy

qTi qj =

{
1 if i = j
0 if i 6= j.

Under this normalization condition, the eigenvector of the
smallest eigenvalue λ1 = 0, takes the form q1 = 1√

n
1. For the
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sake of convenience, we define below a few graph laplacian
related functions:

fij(t) =

n∑
k=2

qikqjke
−λkt (2)

g(t) =

n∑
k=2

e−λkt (3)

Gα =

∫ ∞
0

gα(s) ds (4)

where λk the kth eigevnalues of L = QΛQT , qij the (i, j)
element of Q, and α ∈ (0, 2]. Note that fij clearly belong
to Fα. In addition, |qij | ∈ [0, 1] implies |fij(t)| ≤ g(t).
Additionally, we define

Λ(k)
α,p = Γ

1
p (α+ 1)

[ k−1∑
m=2

(λk − λm)
α
p

(αλm)
α+1
p

+

n∑
m=k+1

(
λm − λk

)α
p

(αλk)
α+1
p

]
.

(5)

where Γ(z) stands for the Gamma function. With a little abuse
of notation, we define

Λα,p =

n∑
k=2

Λ(k)
α,p. (6)

III. PROBLEM STATEMENT

Consider a collection of 1, . . . , n autonomous agents, de-
fined through the state x(i) ∈ R, i = 1, . . . , n. The agents
execute a consensus algorithm on a network with symmetric
couplings to align their states. This alignment process is per-
turbed by n noise sources powered by stable random motions.
Every source is attached to node i and it acts independently
of the rest of the sources. This setting leads to the following
system of stochastic differential equations:

dxt = −Lxt dt+ dzt, t > 0 (7)

where xt =
[
x

(1)
t , . . . , x

(n)
t

]T
is the state vector, L is the

graph laplacian matrix that satisfies Assumption 1. Evidently,
dzt = M(dt) is a multi-dimensional stable process under the
next condition:

Assumption 2. dzt =
[
M1(dt), . . . ,Mn(dt)

]T
is a vec-

tor of n independent random measures. For every i =
1, . . . , n, the measure Mi(dt) is defined on the measure space
([0,∞),B

(
[0,∞)

)
, | · |

)
such that

Mi(t− s) ∼ Sα
(
|t− s|1/α, βi, 0

)
, βi ∈ [−1, 1]

is a random measure.

The initial vector in system (7), x0 =
[
x

(1)
0 , . . . , x

(n)
0

]T
,

is arbitrary but fixed and it is chosen independently of dzt.
System (7) is the differential form of a multi-dimensional
generalized Ornstein-Uhlenbeck process, with integral repre-
sentation

xt = e−Ltx0 +

∫ t

0

e−L(t−s)dzs (8)

Processes of this type have been studied in the past (see for
example [20] and [21]) for dzs a generic stable measure and
−L being Hurwitz (i.e. limt→+∞ e−Lt = On×n ).

The first objective of this paper is to study the funda-
mental properties of the solution of (8), define concepts of
performance for (7), and calculate them explicitly, whenever
possible. Otherwise we obtain faithful approximations and
validate their efficiency.

IV. OUTPUT SIGNAL STATISTICS

Unlike the models discussed in [20] and [21], −L in
(7) is not Hurwitz. The interest in the study of consensus
seeking systems is on observables that measure types of state
differences. For example, we are interested in the relative
agent displacement (i.e., x(i)−x(j)), or agents’ deviation from
network average

(
i.e., x(i)− 1

n

∑n
j=1 x

(j)
)
. For the latter case,

stacking all the elements i = 1, . . . , n yields

y = Mnx (9)

where Mn = In− 1
n11

T is the centering matrix. Applying this
transformation to (7) sets the marginal eigenvalue unobserv-
able so that noise-free output is asymptotically stable. Also,
the noisy output process y = {yt = Mn xt, t ≥ 0} enjoys a
number of remarkable properties summarized below.

Theorem 1. Under Assumptions 1 and 2, the process y =
{yt, t ≥ 0} in (9) generated by x = {xt, t ≥ 0} to be the
realization of (8), satisfies:

yt = QΦ(t)QT y0 +

∫ t

0

QΦ(t− s)QT dzs, (10)

where

Φ(t) = Diag
[
0, e−λ2t, . . . , e−λnt

]
and {λi}ni=2 the eigenvalues of L. For every fixed t, yt is
a stable vector, with the ith element y(i)

t a stable random
variable with t-dependent distribution parameters. As t→∞,
the lth element of y = limt yt, is distributed as

y(l) ∼ Sα
(
σl, βl, µl

)
where

σαl =

n∑
j=1

σαlj

βl =
1

α

∑
j βjσ

α
lj

∫∞
0
flj(s)

<α> ds

σαj

µl =

{
0, α 6= 1

− 2
π

∑
j βj

∫∞
0
flj(s) ln |flj(s)| ds, α = 1

(11)

with

σαlj =
1

α

∫ ∞
0

|flj(s)|α ds. (12)

Proof. For the first part of the proof we observe that Mn can
be expressed as Mn = QEQT , where Q is the eigenvector
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matrix of L, and E the n× n diagonal matrix with structure
E = Diag[0, 1, . . . , 1]. For yt = Mnxt, we have

yt = QEQTQe−ΛtQTx0 +QEQT
∫ t

0

Qe−Λ(t−s)QT dzs

= QΦ(t)QTx0 +

∫ t

0

QΦ(t− s)QT dzs

= QΦ(t)
(
EQTx0

)
+

∫ t

0

QΦ(t− s)QT dzs

= QΦ(t)QT y0 +

∫ t

0

QΦ(t− s)QT dzs.

The second step is due to the linearity of the integral operator
in Proposition 3. The lth element of yt, equals2

y
(l)
t =

n∑
j=1

flj(t)y
(j)
0 +

n∑
j=1

∫ t

0

flj(t− s)Mj(ds),

where fij(t) as in (2). In other words, y(l)
t is equal to a

transient constant term plus the sum of n independent α-stable
integrals, each of which involves an m-measurable function.
From Proposition 3, the jth stable integral∫ t

0

flj(t− s)Mj(ds) ∼ Sα
(
σlj(t), βlj(t), µlj(t)

)
with
σlj(t)

α = 1
α

∫ t
0
|flj(s)|α ds, βlj(t) =

βj
α

∫ t
0
flj(s)

<α> ds

σlj(t)
, and

µlj(t) ≡ 0 if α 6= 1 and µlj(t) = − 2βj
π

∫ t
0
flj(s) ln |flj(s)| ds,

otherwise. An inductive application of Proposition 2 implies
that the sum of n independent stable integrals, is a stable
random variable:

n∑
j=1

∫ t

0

flj(t− s)Mj(ds) ∼ Sα
(
σl(t), βl(t), µl(t)

)
with σαl (t) =

∑
j σ

α
lj(t), βl(t) = 1

α

∑
j βlj(t)∑
j σ

α
lj(t)

, and µl(t) =∑
j µlj(t). The result follows immediately after taking the

limit in t.

Theorem 1 explains that the distance of agents from network
average follows a well-defined stable distribution for all times.
It is remarked that the network topology affects the spread
of the distribution, the symmetry and if α = 1, also the
shift parameter. Network topology does not, however, impact
stability index α. We conclude that the deterministic process
(in our case the network topology) cannot affect the tail of the
distribution. The impulsiveness and frequency of the shocks
will continue to affect the system regardless of its structure.
The network can, to some extend, handle its ability to remain
rigid in the face of these shocks.

Another observation due at this point, is that distribution
parameters, although valuable, are quite difficult to be ex-
pressed in closed form. Unfortunately, α-stable processes are
not famous for yielding elegant formulas, especially for multi-
dimensional systems [19]. In an interesting turn of events,
there is a remarkable exception to this major difficulty for
linear consensus systems.

2We consider equality in the sense of distribution, when we refer to
stochastic processes.

Corollary 1. If for the graph laplacian spectrum, it holds that
λ2 = λn =: λ then for any t ≥ 0

y
(l)
t ∼ Sα

(
σl(t), βl(t), µl(t)

)
with

σl(t) =
(n− 1) + (n− 1)α

nαα2λ

(
1− e−αλt

)
βl(t) =

(1− e−αλt)
(
βi(n− 1)α −

∑
j 6=i βj

)
nαα3λ

[
(n+ 1)(1 + (n− 1)α−1)

]
µl(t) =

{
0, α 6= 1

2λ
−1(1−e−λt)−te−λt

nπ

(
(n− 1)βl −

∑
j 6=l βj

)
, α = 1.

Proof. Condition λ2 = λn implies λ2 = λ3 = · · · = λn =
λ > 0. Also, by virtue of symmetry on L the matrix Q consists
of unit length mutually orthogonal columns as well as rows.
In view of q1 = 1√

n
1, it is straightforward

fij(t) =

{
− 1
ne
−λt, i 6= j

n−1
n e−λt, i = j.

Consequently,

σαij(t) =

{
1

nαα2λ

(
1− e−αλt

)
, i 6= j

(n−1)α

nαα2λ

(
1− e−αλt

)
, i = j.

The result follows by straightforward algebra.

Canonical example of a graph with identical non-zero
laplacian eigenvalues is the complete graph with uniform
coupling weights3. Although Corollary 1 assumes such a
special case of connectivity, one can make a few network
related significant remarks. Corollary 1 suggests that for fixed
number of agents and increased connectivity (i.e. λ >> 1)
the scale, the skew and the shift of the distribution deteriorate
as O(λ−1). On the other hand, growth of network with fixed
communication weights (i.e. n >> 1) reveals essentially α-
dependent behavior. To see this let us for a moment focus
on on symmetric α-stable noise (i.e. β = µ = 0). In such
case, scale σl grows as O(n1−α) when noise sources do
not attain finite first moments (i.e. α in the range of (0, 1)).
On the other hand, scale converges to 1−e−αλt

α2λ if noise has
finite first moments (i.e. α in the range of (1, 2]). The direct
implication of Corollary 1 is that large-scale networks (in
terms of number of nodes) may exhibit higher deviations than
small-scale networks, when additive noise induce shocks of
increased frequency and impact (i.e. with infinite expectation).
The situation is reversed when noise is less impulsive (i.e.
α ∈ [1, 2]).

V. MEASURES OF AGGREGATE DEVIATIONS

For stability index α = 2, we recover the Gaussian-based
stochastic behavior of y = {yt, t ≥ 0}. The statistical
properties of interest are rendered from their first and second
moments, both of which are well-defined and asymptotically
constant. For networks like (7) researchers focus on the aggre-
gate variability of the output, E

[
‖yt‖2

]
, in order to measure

3Also called complete topological graph.
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its behavior in the face of noise. As Proposition 1 explains,
this is not possible for stable noise with α < 2. This poses
the question on how could one quantify the impact of noise
to a dynamical system hit by heavy-tailed noise. One answer
could be the sum of scales in a α-stable vector.

Definition 2. The cumulative scale of an α-stable vector y =
[y1, . . . , ym]T is defined to be

Σα(y) = ‖σ‖αα =

m∑
l=1

σαl

where σ = [σ1, . . . , σm]T and σl is the scale parameter of the
lth element of y.

For y, the long term output vector of (10), Σα(y) can be
trivially expressed in terms of the stable integrals (12):

Definition 3. The steady-state aggregate fluctuations of output
dynamics (10) are defined to be

Σα(y) =
1

α

n∑
i=1

n∑
j=1

∫ ∞
0

|fij(t)|α dt. (13)

Evidently, Σα(y) for y as in (9), is a measure of steady-state
dispersion of agents around the moving average. The larger
the Σα(y), the more impulsive and magnified the fluctuation
of the agents around the moving average is. The spectral
functions fij , i, j ∈ V are as in (2) and represent the network
contribution in the form of the steady-state distribution of y.
In other words, σij contains all the information that is for
primary interest to a network analyst. The next result asserts
that Σα(y) decreases with α.

Proposition 4. Assume the network dynamics of (7) with the
output process (9). Then

∂

∂α
Σα(y) < 0.

Proof. From the definition of Σα in (13) it suffices to prove
∂
∂ασ

α
ij < 0. This is equivalent to

− 1

α2

∫ ∞
0

|fij(t)|α dt+
1

α

∫ ∞
0

ln
(
|fij(t)|

)
|fij(t)|α dt < 0.

The latter condition is true if, ln
(
|fij(t)|

)
< 1

α . This is in turn
equivalent to |fij(t)| < e1/α. The latter inequality is, however,
true in view of

|fij(t)| ≤ e−λ2t
∑
k

|qik||qjk|

≤ e−λ2t

√∑
k

|qik|2
√∑

k

|qjk|2 < 1

by virtue of the Cauchy-Schwarz inequality and the properties
of normalized Laplacian eigenvectors.

In conclusion, the more impulsive the noise, the more the
states of the network are prone to exhibit large and frequent
deviations. For α = 2, Assumption 1 and Property 1 yield

Σ2(y) =
1

2

∑
i,j

∫ ∞
0

f2
ij(t) dt =

1

2

n∑
k=2

1

2λk
=

1

2
E
[
‖y‖22

]
, (14)

where λk are the eigenvalues of L, and the last step is in
view of Property 3 of Proposition 1. Σ2 is intimately related
to the cumulative variance of the output y of system (7), i.e.
the H2-norm of the consensus network; a central measure of
performance in stochastically driven dynamical systems [9].
The Gaussian case is unique in its kind, in the sense that leads
to a closed form expressions of Σ2. Clearly, the calculation
above is not correct when α < 2. It seems that no other value
of the stability index offers this elegance, with the exception
of complete topological graph, that can be directly calculated
using Corollary 1 as:

Σα(y) =
(n− 1)

(
1 + (n− 1)α−1

)
α2nα−1λ

(15)

where α ∈ (0, 2] and λ := λ2 = λ3, · · · = λn > 0.

VI. SPECTRAL BASED BOUNDS

Stable integrals as in (12) are indicative of the extent to which
Σα can be calculated in closed form. With the exception
of (15), one may need to rely on estimates of aggregate
steady-state scale Σα(y) for dynamical networks such as
(7). The purpose of this section is to elaborate on (13) and
establish upper estimates on Σα. It is desirable to express these
estimates as explicit functions of the eigenstructure of L, given
the feature of noise. Our strategy is to construct estimates that
become sharp as λ2 ↑ λn and/or as α ↑ 2, so as to resonate
with the two extreme cases of connectivity and noise.

Theorem 2. Assume network (7) with Assumptions 1 and 2 to
hold and the stability parameter α ∈ (0, 2] and consider the
output vector-valued process y = {yt, t ≥ 0} from (10). The
following estimates on Σα(y) hold:
If α ∈ (0, 1],

Σα(y) ≤ c1
n∑
k=2

‖qk‖2αα Λ
(k)
α,1 + c2Gα,

for c1, c2 the constants

c1 =
1

α(n− 1)α
and c2 =

1 + (n− 1)1−α

αnα−1
.

If α ∈ [1, 2],

Σα(y) ≤ min

{
d1Λα−1

α,α

n∑
k=2

‖qk‖2αα Λ(k)
α,α + d2Gα,

d3Λα−1
α,α

n∑
k=2

‖qk‖2αα Λ(k)
α,α + d4Gα

}
for d1, d2, d3, d4 defined to be

d1 =
2α−1

α(n− 1)α
, d2 =

2α−1n1−α

α
(1 + (n− 1)1−α),

d3 =
1

α(n− 1)α
, d4 =

(1 + (n− 1)1−α)(1 + αΛα−1
α,α )

nα−1(n− 1)−α

The sum is taken over the non-zero eigenvalues λk of the graph
Laplacian L with qk to be the kth eigenvector that corresponds



7

to the λk eigenvalue. Also, Λ
(k)
α,α as in (5), Λα,α as in (6) and

Gα as in (4).

Proof. From Definition 2

Σα =

n∑
i=1

σαi =

n∑
i=1

n∑
j=1

σαij =

n∑
j 6=i=1

σαij +

n∑
i=1

σαii (16)

as it occurs from Proposition 1 and Theorem 1. The following
Claims are central estimates of σαij for α ∈ (0, 1] and α ∈ [1, 2]
respectively. Their proof is put in the Appendix.
We begin with the case α ∈ (0, 1].

Claim 1. If α ∈ (0, 1], the following estimates hold true:

σαij ≤


c1
∑
k |qik|α|qjk|αΛα,1(k) + c2Gα, i 6= j

c1
∑
k |qik|2αΛα,1(k) + c2Gα, i = j

where c2 = 1
nαα(n−1)α and c2 = 1

αnα .

the first part of the result follows by direct application of the
bounds of σαij of Claim 1 in (16). We continue with the case
α ∈ [1, 2). We make a similar claim on upper bounds of σαij .

Claim 2. If α ∈ [1, 2] then, for i 6= j, either

σαij ≤
2α−1

α(n− 1)α

[
Λα−1
α,α

∑
k

|qik|α|qjk|αΛα,α(k) +
Gα
nα

]
or

σαij ≤
1

α(n− 1)α

[
Λα−1
α,α

∑
k

|qik|α|qjk|αΛα,α(k)+

+
Gα
nα
(
1 + αΛα−1

α,α

)]
Also, for i = j, either

σαii ≤
2α−1

α(n− 1)α

[
Λα−1
α,α

∑
k

|qik|2αΛα,α(k) +
(n− 1)α

nα
Gα

]
or

σαii ≤
1

α(n− 1)α

[
Λα−1
α,α

∑
k

|qik|2αΛα,α(k)

+
(n− 1)α

nα
Gα
(
1 + αΛα−1

α,α

)]
The second part of the result follows in a similar manner to
the first.

A worth mentioning technical remark that occurs from The-
orem 2 is the technical distinction between estimates obtained
with noise sources for finite first moments, i.e. α ∈ (1, 2], and
estimates for noise with infinite first moment, i.e. α ∈ (0, 1].
In either case, bounds are generally constituted of two terms:
The first term equals the weighted sum of the α-norm of
the n − 1 eigenvectors of L. The weight of the kth term
in this sum is an eigenvalue-based function that essentially
measures the deviation of the kth eigenvalue with respect to
the rest n − 2. The second term effectively involves the sum
of the inverse non-zero eigenvalues of L that it is expressed in

integral form. One can sacrifice additional sharpness and use
the simple bound Gα ≤ (n−1)

λ2
.

We remark that λ2 ↑ λn implies Λα,α ↓ 0. The estimates of
Theorem 2 coincide with the exact value of Σα(y) in (15).
However, for α = 2, the estimates in Theorem 2 do not
match with the value in (14). This non-negligible discrepancy
motivates the additional upper bound of Σα(y).

A. Estimates near α = 2.

Together with Theorem 2 we propose a different, yet particu-
larly simple approach, in establishing estimates of Σα, via a
harmless perturbation of the scale parameter from the Gaussian
case α = 2.

Theorem 3. Assume network (7) with Assumptions 1 and 2
to hold and the stability parameter α ∈ (1, 2]. Let the output
vector-valued process y = {yt, t ≥ 0} as in (10). Then,

Σα(y) ≤ 1

α

n∑
k=2

1

2λk
+

1

α

∫ 2

α

∫ ∞
0

n2−wgw(s)
∣∣ ln g(s)

∣∣ dsdw.
where g(t) is as in (3).

Proof. Rewrite σαij as a harmless perturbation of
1
α

∫∞
0
|fij(s)|2 ds, as follows:

σαij =
1

α

∫ ∞
0

|fij(s)|α ds

=
1

α

∫ ∞
0

|fij(s)|2 ds+
1

α

∫ ∞
0

∫ α

2

ln(|fij(s)|)|fij(s)|w dwds

=
1

α
Aij +

1

α
Bij

The integrand in Aij reads
n∑
k=2

q2
ike
−2λks +

n∑
k1 6=k2=2

qik1qjk1qik2qjk2e
−(λk1+λk2 )s

so that summing over j
n∑
k=2

q2
ike
−2λks, (17)

from the eigenvectors property
∑n
j=1 qjk ≡ 0 ∀ k > 1. We

proceed with Bij . From the convexity of r(t) = |t|w for every
w ∈ [α, 2], Lemma 2 yields

|fij(s)|w ≤ gw−1(s)

n∑
k=2

|qik|w|qjk|we−λks

and |fij(s)| ≤ g(s)⇒ | ln(|fij(s)|)| ≤
∣∣ ln g(s)

∣∣ where g(t) =∑n
k=2 e

−λkt.

Bij ≤
n∑
k=2

∫ ∞
0

∫ 2

α

|qik|w|qjk|wgw−1(s)
∣∣ ln g(s)

∣∣e−λks dwds
Taking the double sum over i and j, in view of

∑
i q

2
ik ≡ 1,

Σα =
∑
i,j

σαij ≤
1

α

n∑
k=2

1

2λk
+

+
1

α

n∑
k=2

∫ ∞
0

∫ 2

α

‖qk‖2ww gw−1(s)
∣∣ ln g(s)

∣∣e−λks dwds
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The result follows in view of the norm estimate

‖qk‖w ≤ n
1
w−

1
2 ‖qk‖2 = n

1
w−

1
2

The upper bound above, although true for α ∈ (1, 2], it is not
expected to provide efficient estimates for values of α very far
away from 2, due mainly to the way it was obtained.

Spectral based estimates such as these of Theorem 2 and
Theorem 3, could possibly be leveraged when developing
optimal design algorithms, that reform the communication
parameters into a network, more robust to the imposed noise.
In order to verify the qualification of the estimates we must
validate their efficiency on different network topologies. This
is in part the subject of §VII.

B. Connection with the pth-moment, for p < α.

Theorem 1 asserts that the output dynamics are stable
vectors with the same stability parameter as the noise sources.
Following Property 3 of Proposition 1, the distribution attains
moments up to any p < α, for α < 2. In particular,

E
[
‖y‖pp

]
= cp(α, β, p)‖σ‖pp (18)

When y is Gaussian (i.e. α = 2), E
[
‖y‖pp

]
exists for p ≤ α.

As Proposition 1 explains, for the non-Gaussian range of α,
the pth moments diverge at p = α. It is thus unreasonable
to try to obtain H2-norm based measures of performance for
heavy-tailed consensus systems. This is why cumulative scale
Σα(y) may be regarded as extension of the classic input/output
H2 performance measure. Indeed, for α = 2, and p = 2, the
statistics of y recover the well-known formula (14).

We conclude this section with reporting the relation of
E
[
‖y‖pp

]
and Σα, through the basic equivalence properties of

Euclidean norms. Straightforward calculations yield for p < a,

cp p/α
√

Σα(y) ≤ E[‖y‖pp] ≤ n1− p
α cp p/α

√
Σα(y)

where c = c(α, β, p) is the constant in Proposition 1. Interest-
ingly enough, the double inequality becomes exact at α = 2
and in the limit p→ 2−.

VII. NUMERICAL EXAMPLES

In this section, we discuss four examples related to out-
put (10). The first three, regard elementary network design
problems. Their objective is to demonstrate that the basic
design strategies (addition/removal of links and re-weighting)
are critically affected by parameter α of input noise. The fourth
example is a validation of the estimates in Theorems 2 and
3. Our focus is on consensus systems driven by symmetric
α-stable noise (i.e. β = 0 and µ = 0).

Example 3. [Design via Expansion] We consider a network
over n = 6 agents that seek consensus. The communication
network, illustrated as G1 in Figure 2, is a linear time-invariant
with unit coupling links. The network is hit by stable noise
forming the dynamics of (7). In this problem, we have the
option to add a new unit-weight link to the network so as to
improve its performance. In other words, we look for the link
location, that upon establishing, Σα is minimized. Numerical

explorations signify that the optimal selection is a function of
α. For α = 2 to α = 1.6655 the optimal location is a link
between nodes 1 and 4 (blue dotted curve). From α = 1.6655
to α = 0.3312 there appear to be two equivalent alternatives:
one is the pair (1,3) and the other is (3,4) (red dashed curves).
For stability values below 0.3313 the optimal pair is (1,3).

Example 4. [Design via Sparsification] Next, we consider a
dense linear network over 10 nodes. It is depicted as graph
G2 in Figure 2. The working hypothesis is that the existence
of too many links, makes for an expensive communication
structure. The problem in this network is to choose the one
link of the network that, upon removal, increases Σα, the least.
Our findings suggest that within the stability range α = 2 to
α = 1.8932, the optimal pair is (2,4) (removal blue dashed
curve). From α = 1.8937 to α = 0.1971 the optimal pair
is (8,10) (removal of the red dashed curve). Finally, for α <
0.1971 the optimal pair appears to be (2,6) (removal of the
green dashed curve).

Example 5. [Design via Re-weighting] In this last example,
we regard a small network of 4 agents, illustrated as G3 in
Figure 2. All but links between nodes (2,3) and (2,5) are fixed
and of unit weight. On the other hand, the edges a23 and a25

are assumed to satisfy a23 = 2−b, a25 = b for some b ∈ (0, 2).
In other words, keeping the overall network budget constant
and equal to a12 +a23 +a25 +a45 = 4 we seek to calibrate the
control parameter b towards the value that minimizes Σα. The
simulations are illustrated in Figure 3 where we essentially
depict the dependence of the optimal calibration (the black
dots) as a function of α.

All three network design problems lead to a definitive con-
clusion: performance evaluation tools that are associated with
a particular type of stochastic uncertainty (e.g. the Gaussian
and the associated H2 performance measure) become obsolete
in other types of uncertainty (e.g. non-Gaussian cases).

Example 6. We test the scale estimates of Theorems 2 and
3. We choose two graphs. The first graph has a significantly
larger eigenvalue ratio than the second one. The curves are
depicted in Figure 3 and are compared with the exact value.
There are generally two remarks due. The estimates perform
better in graphs with ratio λn/λ2 close to 1. Also, as the noise
distribution becomes more and more impulsive (smaller values
of α) the estimates becomes less and less efficient.

VIII. DISCUSSION

Modeling of uncertainty in networked control systems typ-
ically assumes noise sources generated by Brownian motion.
Albeit popular, such perturbations are not rich enough to
incorporate real-world uncertainties that incorporate impul-
sive shocks. In this paper, we considered consensus seeking
systems in the presence of sources induced by heavy-tailed
probability measures.

We defined extensions of measures of performance that
quantify systemic response in the presence of heavy-tailed
noise. These were cumulative scale parameters of α-stable
vectors, that demonstrate close relations with the p-norms of
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Fig. 2: The graph topologies of Examples 3, 4 and 5, respectively.
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Fig. 3: The cumulative scale parameter Σα as function of the
control b, in Example 5. The different curves correspond to
stable noises of various stability parameters. The lowest curve
is this of the Gaussian case, α = 2. The Σα curves increase
monotonically as α varies from 2 to 0, verifying Proposition
4. The sequence of black dots signify the global minimum in
each type of noise.

output dynamics. It is argued that heavy-tailed performance
measures may be regarded as generalization ofH2-norm based
measures of performance for linear systems with white noise
inputs. Unless certain types of networks or noise are assumed,
explicity calculation of heavy-tailed performance measures is
not possible. Our estimates perform quite well for types of
networks with the property that the graph laplacian eigenvalues
satisfy λn/λ2 ≈ 1. In addition to complete graph connectivity
(where λn/λ2 = 1) expander graphs also satisfy ratio λn/λ2,
[22]. Finally, we presented simple network design examples
on α-stable consensus network where we demonstrate that any
optimal synthesis strategy must take into account the shock-
impulsiveness of infused noise.

APPENDIX

We proceed with reviewing some fundamental inequalities
related to the function s(t) = |t|p for p > 0. These inequalities
play a crucial role in the derivation of the technical results of
our paper.

Lemma 1. Let u, v ∈ R. If 0 < p ≤ 1, then

|u+ v|p ≤ |v|p + |u|p.

If p ∈ (1, 2), then

|u+v|p ≤ min
{

2p−1(|u|p+ |v|p), |u|p+ |v|p+p |v|p−1 |u|p
}
.

Proof. For the first inequality as well as |u+v|p ≤ 2p−1(|v|p+
|u|p) for p > 1, we refer to [19]. It remains to show that for
p ∈ (1, 2] |v + u|p ≤ |v|p + |u|p + p|v|p−1|u|p. For this we
write
|u+ v|p = |v|p + |u+ v|p − |v|p

≤ |v|p + p|u|
∫ 1

0

|q(u+ v) + (1− q)v|p−1 dq

≤ |v|p + p|u|
∫ 1

0

|qu|p−1 dq + p|u||v|p−1

where the last step is due to the first inequality.

The estimate of | · |p for p ∈ [1, 2) relies on two inequalities.
The first one coincides with the inequality on p ∈ (0, 1],
providing sharper estimates. The second inequality becomes
exact if and only if either u or v is zero.

Lemma 2. Let φ be a positive homogeneous of degree
p > 1 and convex function, defined on R. Let real numbers
y1, . . . , ym and b1, . . . , bm non-negative with

∑
i bi > 0. Then

φ

( m∑
i=1

biyi

)
≤
( m∑
i=1

bi

)p−1 m∑
i=1

biφ(yi)

Proof. We write

φ

( m∑
i=1

biyi

)
= φ

(
w ·

∑
i biyi
w

)
= wpφ

(∑
i biyi
w

)
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Fig. 4: Simulation of Example 6. Graphs with smaller λnλ2
ratio

provide scale estimates closer to the actual value. Estimate 1,
regards Σα with α ∈ (0, 1]. Estimate 2, regards Σα with α ∈
[1, 2]. Estimate 3, regards Σα with α ∈ [1, 2] as in Theorem
3.

where w =
∑
i bi > 0. The result follows by direct application

of Jensen’s inequality [23] on φ
(∑

i biyi∑
i bi

)
.

Lemma 3 (Minkowski’s Inequality [24]). Let p ≥ 1 and f, g
real-valued, integrable functions on E ⊂ R. Then(∫

E

|f + g|p ds
) 1
p

≤
(∫

E

|f |p ds
) 1
p

+

(∫
E

|g|p ds
) 1
p

.

Proof of Claim 1. Observe that Assumption 1 implies,
n∑
k=2

qikqjk =

{
− 1
n , i 6= j

n−1
n , i = j.

Based on this property and elementary algebra we observe that
fij(t) can be re-written as:

fij(t) =

{
Wi,j,n(t)− 1

n(n−1)g(t), i 6= j

Wi,j,n(t) + 1
ng(t), i = j

where

Wi,j,n(t) =
1

n− 1

n∑
k=2

∑
m 6=1,k

(e−λkt − e−λmt)qikqjk,

and g(t) =
∑n
k=2 e

−λkt. We elaborate only for i 6= j.
Repeated application of Lemma 1, followed by e−x ≥ 1 − x
gives

|fij(t)|α ≤
1

(n− 1)α

n∑
k=2

|qik|α|qjk|α×

[ k=1∑
m=2

e−λmt
(
1− e−(λk−λm)t

)
+

+ e−λkt
n∑

m=k+1

(
1− e−(λm−λk)t

)]α
+

gα(t)

nα(n− 1)α

and

|fij(t)|α ≤
1

(n− 1)α

n∑
k=2

|qik|α|qjk|α×

[ k−1∑
m=2

e−αλmt(λk − λm)αtα+

+ e−αλkt
n∑

m=k+1

(
λm − λk

)α
tα
]

+
gα(t)

nα(n− 1)α

Consequently,

∫ ∞
0

|fij(s)|α ds ≤
1

(n− 1)α

n∑
k=2

|qik|α|qjk|α×

Γ(α+ 1)

( k−1∑
m=2

(λk − λm)α

(αλm)α
+

1

(aλk)α

n∑
m=k+1

(
λm − λk

)α)

+

∫∞
0
gα(s) ds

nα(n− 1)α
=

1

(n− 1)α

[ n∑
k=2

|qik|α|qjk|αΛα,1(k) +
Gα
nα

]
Following similar steps, for i = j, we have

∫ ∞
0

|fij(s)|α ds ≤

≤ 1

(n− 1)α

[ n∑
k=2

|qik|α|qjk|αλα,1(k) +
(n− 1)α

nα
Gα

]
.

Proof of Claim 2. For α ∈ [1, 2], we invoke Lemma 3 and
use similar techniques to these in proof of Claim 1 to obtain

σij ≤


1

α
1
α (n−1)

[∑
k |qik||qjk|Λα,α(k) + 1

nG
1
α
α

]
, i 6= j

1

α
1
α (n−1)

∑
k |qik|2Λα,α(k) + 1

α
1
α n
G

1
α
α , i = j

We need, however, estimates of σαij . So

σαij ≤

 1
α(n−1)α

[∑
k |qik||qjk|Λα,α(k) + 1

nG
1
α
α

]α
, i 6= j

1
α(n−1)α

[∑
k |qik|2Λα,α(k) + (n−1)

n G
1
α
α

]α
, i = j
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Now, we use the second inequality of Lemma 1, part by part.
Fix i 6= j. Then, either

σαij ≤
2α−1

α(n− 1)α

[(∑
k

|qik||qjk|Λα,α(k)

)α
+
Gα
nα

]
≤ 2α−1

α(n− 1)α

[
Λα−1
α,α

∑
k

|qik|α|qjk|αΛα,α(k) +
Gα
nα

]
,

where the last step is due to Lemma 2, or

σαij ≤
1

α(n− 1)α

[(∑
k

|qik||qjk|Λα,α(k)

)α
+

+
Gα
nα

+ α
(∑

k

|qik||qjk|Λα,α(k)
)α−1Gα

nα

]
≤ 1

α(n− 1)α

[
Λα−1
α,α

∑
k

|qik|α|qjk|αΛα,α(k)

+
Gα
nα
(
1 + αΛα−1

α,α

)]
for the last step is due (

∑
k |qik||qjk|Λα,α(k))α−1 ≤ Λα−1

α,α .
Similar steps are taken for i = j.
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