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Growing Linear Dynamical Networks Endowed
by Spectral Systemic Performance Measures
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Abstract—We propose an axiomatic approach for design
and performance analysis of noisy linear consensus
networks by introducing a notion of systemic performance
measure. This class of measures are spectral functions of
Laplacian eigenvalues of the network that are monotone,
convex, and orthogonally invariant with respect to the Lapla-
cian matrix of the network. It is shown that several existing
gold-standard and widely used performance measures in
the literature belong to this new class of measures. We
build upon this new notion and investigate a general form
of the combinatorial problem of growing a linear consen-
sus network via minimizing a given systemic performance
measure. Two efficient polynomial-time approximation algo-
rithms are devised to tackle this network synthesis problem:
a linearization-based method and a simple greedy algorithm
based on rank-one updates. Several theoretical funda-
mental limits on the best achievable performance for the
combinatorial problem are derived that assist us to evaluate
optimality gaps of our proposed algorithms. A detailed com-
plexity analysis confirms the effectiveness and viability of
our algorithms to handle large-scale consensus networks.

Index Terms—Network analysis and control, multi-agent
systems, linear consensus networks, greedy algorithms,
performance measures.

I. INTRODUCTION

THE interest in the control systems society for performance
and robustness analysis of a large-scale dynamical network

is rapidly growing [1]–[10]. Improving global performance as
well as robustness to external disturbances in large-scale dy-
namical networks is crucial for sustainability, from engineer-
ing infrastructures to living cells; examples include a group of
autonomous vehicles in a formation, distributed emergency re-
sponse systems, interconnected transportation networks, energy
and power networks, metabolic pathways, and even financial
networks. One of the fundamental problems in this area is to
determine to what extent uncertain exogenous inputs can steer
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the trajectories of a dynamical network away from its working
equilibrium point. To tackle this issue, the primary challenge
is to introduce meaningful and viable performance and robust-
ness measures that can capture essential characteristics of the
network. A proper measure should be able to encapsulate tran-
sient, steady-state, macroscopic, and microscopic features of the
perturbed large-scale dynamical network.

In this paper, we propose a new methodology to classify sev-
eral proper performance measures for a class of linear consensus
networks subject to external stochastic disturbances. We take an
axiomatic approach to quantify essential functional properties
of a number of sensible measures by introducing the class of
systemic performance measures and show that this class of mea-
sures should satisfy monotonicity, convexity, and orthogonal in-
variance properties. It is shown that several existing and widely
used performance measures in the literature are in fact special
cases of this class of systemic measures [3], [6], [11]–[13].

The performance analysis of linear consensus networks sub-
ject to external stochastic disturbances has been studied in [1],
[2], and [12]–[16], where the H2-norm of the network was em-
ployed as a scalar performance measure. In [1], the authors
interpret the H2-norm of the system as a macroscopic perfor-
mance measure capturing the notion of coherence. It has been
shown that if the Laplacian matrix of the coupling graph of the
network is normal, the H2-norm is a function of the eigenval-
ues of the Laplacian matrix [1], [12], [15]. In [2], the authors
consider general linear dynamical networks and show that tight
lower and upper bounds can be obtained for the H2-norm of the
network from the exogenous disturbance input to a performance
output, which are functions of the eigenvalues of the state matrix
of the network. Besides the commonly used H2-norm, there are
several other performance measures that have been proposed in
[1], [6], and [17]. In [11], a partial ordering on linear consensus
networks is introduced, where it shows that several previously
used performance measures are indeed Schur-convex functions
in terms of the Laplacian eigenvalues. In a more relevant work,
the authors of [18] show that performance measures that are
defined based on some system norms, spectral, and entropy
functions exhibit several useful functional properties that allow
us to utilize them in network synthesis problems.

The first main contribution of this paper is introduction of
a class of systemic performance measures that are spectral
functions of Laplacian eigenvalues of the coupling graph of a
linear consensus network. Several gold-standard and widely
used performance measures belong to this class, for example,
to name only a few, spectral zeta function, Gamma entropy,
expected transient output covariance, system Hankel norm,
convergence rate to consensus state, logarithm of uncertainty
volume of the output, Hardy–Schatten system norm or Hp -
norm, and many more. All these performance measures are
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monotone, convex, and orthogonally invariant. Our main goal is
to investigate a canonical network synthesis problem: growing
a linear consensus network by adding new interconnection
links to the coupling graph of the network and minimizing a
given systemic performance measure. In the context of graph
theory, it is known that a simpler version of this combinatorial
problem, when the cost function is the inverse of algebraic
connectivity, is indeed NP-hard [19]. There have been some
prior attempts to tackle this problem for some specific choices
of cost functions (i.e., total effective resistance and the inverse
of algebraic connectivity) based on semidefinite programming
(SDP) relaxation methods [20], [21]. There is a similar version
of this problem that is reported in [22], where the author studies
the convergence rate of circulant consensus networks by adding
some long-range links. Moreover, a continuous (noncombina-
torial) and relaxed version of our problem of interest has some
connections to the sparse consensus network design problem
[23]–[25], where they consider �1-regularized H2-optimal
control problems. The other related works [26], [27] argue
that some metrics based on controllability and observability
Gramians are modular or submodular set functions, where
they aim to show that their proposed simple greedy heuristic
algorithms have guaranteed suboptimality bounds.

In our second main contribution, we propose two effi-
cient polynomial-time approximation algorithms to solve the
above-mentioned combinatorial network synthesis problem: a
linearization-based method and a simple greedy algorithm based
on rank-one updates. Our complexity analysis asserts that com-
putational complexity of our proposed algorithms is reasonable
and makes them particularly suitable for synthesis of large-scale
consensus networks. To calculate suboptimality gaps of our pro-
posed approximation algorithms, we quantify the best achiev-
able performance bounds for the network synthesis problem in
Section V. Our obtained fundamental limits are exceptionally
useful as they only depend on the spectrum of the original net-
work and they can be computed a priori. In Section VII-B,
we classify a subclass of differentiable systemic performance
measures that are indeed supermodular. For this subclass, we
show that our proposed simple greedy algorithm can achieve a
(1 − 1/e)-approximation of the optimal solution of the combi-
natorial network synthesis problem. Our extensive simulation
results confirm effectiveness of our proposed methods.

Some of the proofs are omitted due to space limitations; we
refer an interested reader to [51].

II. PRELIMINARIES AND DEFINITIONS

A. Mathematical Background

The set of real numbers is denoted by R, the set of nonnegative
by R + , and the set of positive real numbers by R++ . The
cardinality of set E is shown by |E|. We assume that 1n , In , and
Jn denote then× 1 vector of all ones, then× n identity matrix,
and the n× n matrix of all ones, respectively. For a vector v =
[vi ] ∈ Rn , diag(v) ∈ Rn×n is the diagonal matrix with elements
of v orderly sitting on its diameter, and for A = [aij ] ∈ Rn×n ,
diag(A) ∈ Rn is diagonal elements of square matrix A. We
denote the generalized matrix inequality with respect to the
positive-semidefinite cone Sn

+ by “� .”
Throughout this paper, it is assumed that all graphs are finite,

simple, undirected, and connected. A graph herein is defined
by a triple G = (V, E , w), where V is the set of nodes, E ⊆{{i, j} ∣∣ i, j ∈ V, i �= j

}
is the set of links, and w : E → R++

is the weight function. The adjacency matrixA = [aij ] of graph
G is defined in such a way that aij = w(e) if e = {i, j} ∈ E ,
and aij = 0 otherwise. The Laplacian matrix of G is defined by
L := Δ −A, where Δ = diag[d1 , . . . , dn ] and di is degree of
node i. We denote the set of Laplacian matrices of all connected
weighted graphs with n nodes by Ln . Since G is both undirected
and connected, the Laplacian matrixL hasn− 1 strictly positive
eigenvalues and one zero eigenvalue. Assuming that 0 = λ1 <
λ2 ≤ · · · ≤ λn are eigenvalues of Laplacian matrixL, we define
operator Λ : Sn

+ → Rn−1
++ by

Λ(L) = [λ2 . . . λn ]T . (1)

The Moore–Penrose pseudoinverse of L is denoted by L† =
[l†j i ], which is a square, symmetric, doubly centered, and
positive-semidefinite matrix. For a given link e = {i, j}, re(L)
denotes the effective resistance between nodes i and j in a graph
with the Laplacian matrix L, where its value can be calculated
as follows:

re(L) = l†ii + l†jj − 2l†ij (2)

where L† = [l†ij ]. For every real q, powers of pseudoinverse of

L is represented by L†,q :=
(
L†)q .

Definition 1: The derivative of a scalar function ρ(.), with
respect to the n-by-n matrix X , is defined by

�ρ(X) :=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

∂ρ
∂x1 1

∂ρ
∂x1 2

. . . ∂ρ
∂x1 n

∂ρ
∂x2 1

∂ρ
∂x2 2

. . . ∂ρ
∂x2 n

...
...

. . .
...

∂ρ
∂xn 1

∂ρ
∂xn 2

. . . ∂ρ
∂xn n

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

where X = [xij ]. The directional derivative of function ρ(X)
in the direction of matrix Y is given by

�Y ρ(X) = 〈�ρ(X), Y 〉 = Tr (�ρ(X)Y )

where 〈., .〉 denotes the inner product operator.
The following majorization definition is from [28].
Definition 2: For every x ∈ Rn

+ , let us define x↓ to be a
vector whose elements are a permuted version of elements of x
in descending order. We say that xmajorizes y, which is denoted
by x� y, if and only if 1Tx = 1Ty and

∑k
i=1 x

↓
i ≥ ∑k

i=1 y
↓
i

for all k = 1, . . . , n− 1.
The vector majorization is not a partial ordering. This is be-

cause from relations x� y and y � x, one can only conclude
that the entries of these two vectors are equal, but possibly with
different orders. Therefore, relations x � y and y � x do not
imply x = y.

Definition 3 (see [28]): The real-valued functionF : Rn
+ →

R is called Schur convex if F (x) ≥ F (y) for every two vectors
x and y with property x� y.

B. Noisy Linear Consensus Networks

We consider the class of linear dynamical networks that con-
sist of multiple agents with scalar state variables xi and control
inputs ui whose dynamics evolve in time according to

ẋi(t) = ui(t) + ξi(t) (3)

yi(t) = xi(t) − x̄(t) (4)
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for all i = 1, . . . , n, where xi(0) = x∗i is the initial condition
and

x̄(t) =
1
n

(
x1(t) + · · · + xn (t)

)

is the average of all states at time instant t. The impact of the
uncertain environment on each agent’s dynamics is modeled
by the exogenous noise input ξi(t). By applying the following
feedback control law to the agents of this network

ui(t) =
n∑

j=1

kij
(
xj (t) − xi(t)

)
(5)

the resulting closed-loop system will be a first-order linear con-
sensus network. The closed-loop dynamics of network (3)–(4)
with feedback control law (5) can be written in the following
compact form:

ẋ(t) = −Lx(t) + ξ(t) (6)

y(t) = Mn x(t) (7)

with initial condition x(0) = x∗, where x = [x1 , . . . , xn ]T is
the state, y = [y1 , . . . , yn ]T is the output, and ξ = [ξ1 , . . . , ξn ]T
is the exogenous noise input of the network. The state matrix
of the network is a graph Laplacian matrix that is defined by
L = [lij ], where

lij :=
{−kij , if i �= j

ki1 + · · · + kin , if i = j
(8)

and the output matrix is a centering matrix that is defined by

Mn := In − 1
n
Jn . (9)

The underlying coupling graph of the consensus network (6)–
(7) is a graph G = (V, E , w) with node setV = {1, . . . , n}, edge
set

E =
{
{i, j} ∣∣ ∀ i, j ∈ V, kij �= 0

}
(10)

and weight function

w(e) = kij (11)

for all e = {i, j} ∈ E , and w(e) = 0 if e /∈ E . The Laplacian
matrix of graph G is equal to L.

Assumption 1: All feedback gains (weights) satisfy the fol-
lowing properties for all i, j ∈ V:

a) nonnegativity: kij ≥ 0;
b) symmetry: kij = kji ;
c) simpleness: kii = 0.

Property (b) implies that feedback gains are symmetric and
(c) means that there is no self-feedback loop in the network.

Assumption 2: The coupling graph G of the consensus net-
work (6)–(7) is connected and time invariant.

According to Assumption 1, the underlying coupling graph
is undirected and simple. Assumption 2 implies that only one of
the modes of network (6) is marginally stable with eigenvector
1n and all other ones are stable. The marginally stable mode,
which corresponds to the only zero Laplacian eigenvalue ofL, is
unobservable from the output (7). The reason is that the output
matrix of the network satisfies Mn1n = 0. When there is no
exogenous noise input, i.e., ξ(t) = 0 for all time, state of all

TABLE I
SOME IMPORTANT EXAMPLES OF SPECTRAL SYSTEMIC PERFORMANCE
MEASURES AND THEIR CORRESPONDING MATRIX OPERATOR FORMS

Systemic Performance
Measure

Matrix Operator Form

Spectral zeta function
ζq (L)

(
Tr
(
L†,q )) 1

q

Gamma entropy Iγ (L) γ2 Tr
(
L −
(
L2 − γ−2Mn

) 1
2
)

Expected transient output
covariance τt (L)

1
2

Tr
(
L†(I − e−L t )

)

System Hankel norm
η(L)

1
2

max
{

Tr(L†X )
∣
∣ X = XT ,

rank(X ) = 1, Tr(X ) = 1
}

Uncertainty volume of the
output υ(L)

(1 − n) log 2 − Tr
(

log
(
L +

1
n
Jn

))

Hardy–Schatten system
norm or Hp -norm θp (L)

α0
(
Tr
(
L†, p−1

)) 1
p

agents converges to a consensus state [17], [29], which for our
case the consensus state is

lim
t→∞x(t) = x̄(0)1n =

1
n

1n1T
nx

∗. (12)

When the network is fed with a nonzero exogenous noise input,
the limit behavior (12) is no more expected and the state of all
agents will be fluctuating around the consensus state without
converging to it. Before providing a formal statement of the
problem of growing a linear consensus network, we need to
introduce a new class of performance measures for networks
(6)–(7) that can capture the effect of noise propagation through-
out the network and quantify degrees to which the state of all
agents is dispersed from the consensus state.

III. SYSTEMIC PERFORMANCE MEASURES

The notion of systemic performance measure refers to a real-
valued operator over the set of all linear consensus networks
governed by (6) and (7) with the purpose of quantifying the
quality of noise propagation in these networks. We have adopted
an axiomatic approach to introduce and categorize a class of
such operators that are obtained through our close examination
of functional properties of several existing gold-standard mea-
sures of performance in the context of network engineering and
science. In order to state our findings in a formal setting, we
observe that every network with dynamics (6)–(7) is uniquely
determined by its Laplacian matrix. Therefore, it is reasonable
to define a systemic performance measure as an operator over
the set of Laplacian matrices Ln .

Definition 4: An operator ρ : Ln → R is called a systemic
performance measure if it satisfies the following properties for
all Laplacian matrices in Ln .

1) Monotonicity: If L2 � L1 , then ρ(L1) ≤ ρ(L2).
2) Convexity: For all 0 ≤ α ≤ 1, we have

ρ(αL1 + (1 − α)L2) ≤ αρ(L1) + (1 − α)ρ(L2).

3) Orthogonal invariance: For all orthogonal matrices U ∈
Rn×n , we have ρ(L) = ρ(ULUT).
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Property 1 guarantees that strengthening couplings in a con-
sensus network never worsens the network performance with
respect to a given systemic performance measure. The coupling
strength among the agents can be enhanced by several means,
for example, by adding new feedback interconnections and/or
increasing weight of an individual feedback interconnection.
The monotonicity property induces a partial ordering1 on all
linear consensus networks governed by (6) and (7). Property 2
requires that a viable performance measure should be amenable
to convex optimization algorithms for network synthesis pur-
poses. Property 3 implies that a systemic performance measure
depends only on the Laplacian eigenvalues.

Theorem 1: Every operator ρ : Ln → R that satisfies Prop-
erties 2 and 3 in Definition 4 is indeed a Schur-convex function
of Laplacian eigenvalues, i.e., there exists a Schur-convex spec-
tral function Φ : Rn−1 → R such that

ρ(L) = Φ(λ2 , . . . , λn ). (13)

The Laplacian eigenvalues of network (6)–(7) depend on
global features of the underlying coupling graph. This is the rea-
son why every performance measure that satisfies Definition 4
is tagged with adjective systemic. Table I shows some impor-
tant examples of systemic performance measures and their cor-
responding matrix operator forms. In the Appendix, we prove
functional properties and discuss applications of these measures
in detail.

IV. GROWING A LINEAR CONSENSUS NETWORK

The network synthesis problem of interest is to improve the
systemic performance of network (6)–(7) by establishing k ≥ 1
new feedback interconnections among the agents. Suppose that
the underlying graph of the network G = (V, E , w) is defined
according to (10) and (11), and a set of candidate feedback
interconnection links Ec =

{
ε1 , . . . , εp

}⊆V × V , which is en-
dowed with a weight function� : Ec → R++ , is also given. The
weight of a link εi ∈ Ec is represented by�(εi), and we assume
that it is prespecified and fixed. The network growing problem
is to select exactly k feedback interconnection links from Ec
and append them to G such that the systemic performance mea-
sure of the resulting network is minimized over all possible
choices.

Let us represent the set of all possible appended
subgraphs by

Ĝk :=
{
Ĝ = (V, Ê , ŵ)

∣
∣
∣Ê ∈ Πk (Ec), ∀εi ∈ Ê : ŵ(εi) = �(εi)

}

where the set of all possible choices to select k links is denoted
by Πk (Ec) :=

{Ê ⊆ Ec
∣
∣ |Ê | = k

}
. Then, the network synthesis

problem can be cast as the following combinatorial optimization
problem:

minimize
Ĝ∈Ĝk

ρ(L+ L̂) (14)

where L̂ is the Laplacian matrix of an appended candidate sub-
graph Ĝ, and the resulting network with Laplacian matrixL+ L̂
is referred to as the augmented network. The role of the candi-
date set Ec is to prespecify authorized locations to establish new
feedback interconnections in the network.

1This implies that the family of networks (6)–(7) can be ordered using a
relation that has reflexivity, antisymmetry, and transitivity properties.

The network synthesis problem (14) is inherently combinato-
rial, and it is known that a simpler version of this problem with
ρ(L) = λ−1

2 is in fact NP-hard [19]. There have been some prior
attempts to tackle the problem (14) for some specific choices of
performance measures, such as total effective resistance and the
inverse of algebraic connectivity, based on convex relaxation
methods [20], [21] and greedy methods [27]. In Sections VI and
VII, we propose approximation algorithms to compute subopti-
mal solutions for (14) with respect to the broad class of systemic
performance measures. We propose an exact solution for (14)
when k = 1 and two tractable and efficient approximation meth-
ods when k > 1 with computable performance bounds. Besides,
in Section VII, we demonstrate that a subclass of systemic per-
formance measures has a supermodularity property. This pro-
vides approximation guarantees for our proposed approximation
algorithm.

V. FUNDAMENTAL LIMITS ON THE BEST ACHIEVABLE

PERFORMANCE BOUNDS

In the following, we present theoretical bounds for the best
achievable values for the performance measure in (14). Let us
denote the optimal cost value of the optimization problem (14)
by r∗k (�).

For a given systemic performance measure ρ : Ln → R, we
recall that according to Theorem 1 there exists a spectral func-
tion Φ such that ρ(L) = Φ

(
λ2 , . . . , λn

)
.

Theorem 2: Suppose that a consensus network (6)–(7) with
an ordered set of Laplacian eigenvalues λ2 ≤ · · · ≤ λn , a set of
candidate links Ec endowed with a weight function � : Ec →
R++ , and design parameter 1 ≤ k ≤ n− 1 are given. Then, the
following inequality:

r∗k (�) > Φ
(
λk+2 , . . . , λn ,∞, . . . ,∞

︸ ︷︷ ︸
k times

)
(15)

holds for all weight functions�. For k ≥ n, all lower bounds are
equal to Φ

(∞, . . . ,∞). Moreover, if the systemic performance
measure has the following decomposable form:

ρ (L) =
n∑

i=2

ϕ(λi)

where ϕ : R → R + is a decreasing convex function and
limλ→∞ ϕ(λ) = 0, then the best achievable performance mea-
sure is characterized by

r∗k (�) >

n∑

i=k+2

ϕ(λi). (16)

Proof: For a given weight function� : Ec → R++ , we show
that inequality (15) holds for every Ê ∈ Πk (Ec). Assume that L̂
is the Laplacian of the graph formed by k added edges. We note
that rank(L̂) = k′ ≤ k. Therefore, dim(kerL̂) = n− k′ ≥ n−
k. Therefore, we can define the nonempty setMj for 2 ≤ j ≤ n,
as follows:

Mj = span{u1 , . . . , uj+k ′ } ∩ span{vj , . . . , vn} ∩ ker L̂

where ui s and vi s are orthonormal eigenvectors of L and
L+ L̂, respectively. We now choose a unit vector v ∈Mj . It
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then follows that

λj (L+ L̂) ≤ vT(L+ L̂)v = vTLv

≤ λj+k ′(L) ≤ λj+k (L). (17)

Therefore, according to (17) and the monotonicity property of
the systemic measure ρ, we get

ρ(L+ L̂) > Φ
(
λk+2 , · · · , λn ,∞, · · · ,∞

︸ ︷︷ ︸
k times

)
(18)

for all Ê ∈ Πk (Ec). Inequality (15) now follows from (18), and
this completes the proof. Note that inequality (16) is a direct
consequence of (15) and limλ→∞ ϕ(λ) = 0. �

Theorem 3: Suppose that in the optimization problem (14),
the set of candidate links form a complete graph, i.e., |Ec | =
1
2n(n− 1). Then, there exists a weight function �0 : Ec →
R++ and a choice of k weighted links from Ec with weight
function � : Ec → R++ such that

r∗k (�) ≤ Φ
(
λ2 , . . . , λn−k ,∞, . . . ,∞

︸ ︷︷ ︸
k times

)
(19)

holds for all weight functions� that satisfies�(e) ≥ �0(e) for
all e ∈ Ec . Moreover, if the systemic performance measure has
the following decomposable form:

ρ (L) =
n∑

i=2

ϕ(λi)

where ϕ : R → R + is a decreasing convex function and
limλ→∞ ϕ(λ) = 0, then the best achievable performance mea-
sure is characterized by

r∗k (�) ≤
n−k∑

i=2

ϕ(λi). (20)

Examples of systemic performance measures that satisfy con-
ditions of Theorem 2 include ζqq (L) for q ≥ 1, Iγ (L), and τt(L).

Theorem 4: Let us consider a linear consensus network
(6)–(7) that is endowed with systemic performance measure
ρ : Ln → R. Then, the network performance can be arbitrarily
improved2 by adding only n− 1 links that form a spanning tree.

It should be emphasized that by increasing weights of all the
edges, the network performance can be arbitrarily improved,
i.e., the value of the systemic performance measure can be
made arbitrarily close to Φ(∞, . . . ,∞). Theorem 4 sheds more
light on this fact by revealing the minimum number of required
links and their graphical topology to achieve this goal.

The results of Theorems 2 and 3 can be effectively applied
to select a suitable value for the design parameter k in the op-
timization problem (14). Let us denote the value of the lower
bound in (15) by �k . The performance of the original network is
then �0 = ρ(L). The percentage of performance enhancement
can be computed by formula �0 −�k

�0
× 100 for all values of pa-

rameter 1 ≤ k ≤ n− 1. For a given desired performance level,
we can look up these numbers and find the minimum number of
required links to be added to the network. This is explained in
detail in Example 5 in Section VIII. In next sections, we propose
approximation algorithms to compute near-optimal solutions for
the network synthesis problem (14).

2This implies that the value of the systemic performance measure can be
made close enough to Φ(∞, . . . ,∞), the lower bound in inequality (15).

VI. LINEARIZATION-BASED APPROXIMATION METHOD

Our first approach is based on a linear approximation of the
systemic performance measure when weights of the candidate
links in Ec are small enough. In the next result, we calculate
the Taylor expansion of a systemic performance measure using
notions of directional derivative for spectral functions.

Lemma 1: Suppose that a linear consensus network (6)–(7)
endowed with a differentiable systemic performance measure
ρ is given. Let us consider the cost function in the optimiza-
tion problem (14). If L̂ is the Laplacian matrix of an appended
subgraph Ĝ = (V, Ê ,�), then

ρ(L+ εL̂) = ρ(L) + εTr
(
�ρ(L)L̂

)
+ O(ε2)

where the derivative of ρ at L is given by

�ρ(L) = W T (diag�φ (Λ(L)))W (21)

for any matrix W .
Proof: Expression (21) can be calculated using the spectral

form of a given systemic performance measure described by
(14) and according to [31, Corollary 5.2.7]. Using the directional
derivative of ρ along matrix L̂, the Taylor expansion of ρ(L+
εL̂) is given by

ρ(L+ εL̂) = ρ(L) + ε�L̂ ρ(L) + O(ε2) (22)

where �L̂ ρ(L) is the directional derivative of ρ atL along matrix
L̂

�L̂ ρ(L) = 〈�ρ(L), L̂〉 = Tr
(
�ρ(L)L̂

)
(23)

where 〈., .〉 denotes the inner product operator. Then, substitut-
ing (23) into (22) yields the desired result. �

According to the monotonicity property of systemic perfor-
mance measures, the inequality

Tr
(
�ρ(L)L̂

) ≤ 0

holds for every Laplacian matrix L̂. This implies that when
weights of the candidate links are small enough, one can ap-
proximate the optimization problem (14) by the following opti-
mization problem:

minimize
Ê∈Πk (Ec )

Tr
(
�ρ(L)L̂

)
(24)

where L̂ is the Laplacian matrix of an appended candidate sub-
graph Ĝ = (V, Ê ,�). Therefore, the problem boils down to se-
lect the k-largest elements of the following set:
{
�(e)

(
�ρ(L)ii+�ρ(L)jj−�ρ(L)ij−�ρ(L)j i

)∣∣e={i, j}∈Ec
}

where �(e) is weight of link e. Algorithm 1 presents our lin-
earization approach. In some special cases, one can obtain an
explicit closed-form formula for systemic performance measure
of the resulting augmented network.

Theorem 5: Suppose that linear consensus network (6)–(7)
with Laplacian matrixL is endowed with systemic performance
measure (59) for q = 1. Let us consider optimization problem
(14), where L̂ is the Laplacian matrix of a candidate subgraph
Ĝ = (V, Ê ,�). Then

ζ1(L+ εL̂) = ζ1(L) − ε
∑

e∈Ê
�(e)re(L2) + O(ε2)
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where re(L2) is the effective resistance between the two ends
of e in a graph with node set V and Laplacian matrix L2 .

Proof: We use the following identity:

(A+ εX)−1 = A−1 − εA−1XA−1 + O(ε2) (25)

for given matrices A,X ∈ Rn×n . Based on [2, Th. 4], the per-
formance measure ζ1(.) can be calculated by

ζ1(L+ εL̂) = Tr((L+ εL̂)†). (26)

Moreover, according to the definition of the Moore–Penrose
generalized matrix inverse, we have

(
L+ εL̂

)†
=
(
L̄+ εL̂

)−1
− 1

n
Jn

where L̄ = L+ 1
n Jn . Using (25) and (26), it follows that

(
L+ εL̂

)†
= L̄−1 − 1

n
Jn − εL̄−1L̂L̄−1 + O(ε2). (27)

Then, we show that

Tr(L̄−1L̂L̄−1) = Tr(L̂L̄−2) =
∑

e∈Ê
�(e)re(L2). (28)

Using (26)–(28), we get the desired result. �
According to Theorem 5, when weights of the candidate links

are small, in order to solve problem (14), it is enough to find
k-largest element of the following set:

{
�(e)re(L2)

∣
∣ e ∈ Ec

}
.

Since the weights of the candidate links are given, we only need
to calculate the effective resistance re(L2) for all e ∈ Ec .

As we discussed earlier, the design problem (14) is gener-
ally NP-hard. Our proposed approximation algorithm in this
section works in polynomial time. In Example 6, we dis-
cuss and compare optimality gap and time complexity of this
method with other methods. The computational complexity of
the linearization-based algorithm in Algorithm 1 is O(n3) for
a given differentiable systemic performance measure from Ta-
ble I. This involves computation of �ρ for the original graph,
which requires O(n3) operations. The rest of the algorithm can
be done inO(pk) for small k andO(p log p) operations for large
k.

VII. GREEDY APPROXIMATION ALGORITHMS

In this section, we propose an optimal algorithm to solve the
network growing problem (14) when k = 1. It is shown that
for some commonly used systemic performance measures, one
can obtain a closed-form solution for k = 1. We exploit our

results and propose a simple greedy approximation algorithm
for (14) with k > 1 by adding candidate links one at a time. For
some specific subclasses of systemic performance measures, we
prove that our proposed greedy approximation algorithm enjoys
guaranteed performance bounds with respect to the optimal so-
lution of the combinatorial problem (14). Finally, we discuss
time complexity of our proposed algorithms.

A. Simple Greedy by Sequentially Adding Links

The problem of adding only one link can be formulated as
follows:

minimize
e∈Ec

ρ(L+ Le), (29)

where Le is the Laplacian matrix of a candidate subgraph Ĝe =
(V, {e},�). Let us denote the optimal cost of (29) by r∗1(�).
In order to formulate the optimal cost value of (29), we need to
define the notion of a companion operator for a given systemic
performance measure.

Lemma 2: For a given systemic performance measure ρ :
Ln → R, there exists a companion operator ψ : Ln → R such
that

ρ(L) = ψ(L†) (30)

for all L ∈ Ln . Moreover, the companion operator of ρ is char-
acterized by

ψ(X) = Φ(μ−1
n , . . . , μ−1

2 ) (31)

for allX ∈ Ln with eigenvaluesμ2 ≤ . . . ≤ μn , where operator
Φ : Rn−1 → R is defined by (13).

Table II shows some important examples of systemic perfor-
mance measure and their corresponding companion operators.

Theorem 6: Suppose that a linear consensus network (6)–
(7) endowed by a systemic performance measure ρ : Ln → R
is given. The optimal cost value of the optimization problem
(29) is given by

r∗1(�) = min
e∈Ec

ψ

(
L† − 1

�−1(e) + re(L)
Ue

)
(32)

where ψ is the corresponding companion operator of ρ and Ue
for a link e = {i, j} is a rank-one matrix defined by

Ue = (L†
i − L†

j )(L
†
i − L†

j )
T (33)

in which L†
i is the ith column of matrix L†.

In some special cases, the optimal solution (32) can be
computed very efficiently using a simple separable update
rule.

Theorem 7: Suppose that linear consensus network (6)–(7)
with Laplacian matrix L is given. Then, for every link e ∈ Ec ,
we have

ζ1(L+ Le) = ζ1(L) − re(L2)
�−1(e) + re(L)

ζ2
2 (L+ Le) = ζ2

2 (L) +
[

re(L2)
�−1(e) + re(L)

]2

− 2re(L3)
�−1(e) + re(L)

υ(L+ Le) = υ(L) − log
(
1 + re(L)�(e)

)
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TABLE II
SOME IMPORTANT EXAMPLES OF SPECTRAL SYSTEMIC PERFORMANCE MEASURES AND THEIR CORRESPONDING COMPANION OPERATORS

Systemic Performance Measure Symbol Spectral Representation The Corresponding Companion Operator

Spectral zeta function ζq (L)
( n∑

i=2

λ
−q
i

)1/q ( n∑

i=2

μqi

)1/q
for q ≥ 1

Gamma entropy Iγ (L) γ2
n∑

i=2

(
λi −

(
λ2
i − γ−2

) 1
2
)

γ2
n∑

i=2

(
μ−1
i −

(
μ−2
i − γ−2

) 1
2
)

Expected transient output covariance τt (L)
1
2

n∑

i=2

λ−1
i (1 − e−λi t )

1
2

n∑

i=2

μi (1 − e
− t
μ i )

System Hankel norm η(L)
1
2

λ−1
2

1
2 μn

Uncertainty volume of the output υ(L) (1 − n) log 2 −
n∑

i=2

log λi (1 − n) log 2 +
n∑

i=2

log μi

Hardy–Schatten system norm or Hp -norm θp (L)

{
1
2π

∫ ∞

−∞

n∑

k=1

σk (G(jω))p dω

}1/p

= α0

(
Tr
(
L†)p−1

) 1
p

α0

( n∑

i=2

μp−1
i

)1/p

for 2 ≤ p ≤ ∞,where

α−1
0 = p

√
−β( p2 ,− 1

2 )

.

where re(Lm ) is the effective resistance between the two ends
of link e in a graph with node set V and Laplacian matrix Lm

for m ∈ {1, 2, 3}.
In these special cases, the computational complexity of cal-

culating the optimal solution for network design problem (29)
is relatively low. For q = 1, the optimal cost value is equal to
ζ1(L+ Le∗), where

e∗ = arg max
e∈Ec

re(L2)
�−1(e) + re(L)

(34)

and for q = 2, the optimal cost value is equal to ζ2(L+ Le∗),
where

e∗ = arg min
e∈Ec

([
re(L2)

�−1(e) + re(L)

]2

− 2re(L3)
�−1(e) + re(L)

)

Moreover, for (71), the optimal cost value is equal to υ(L+
Le∗), where e∗ = arg mine∈Ec log

(
1 + re(L)�(e)

)
. The loca-

tion of the optimal link is sensitive to its weight. For exam-
ple when optimizing with respect to ζ1 , maximizers of re(L),
re(L2), and re(L2)/re(L) can be three different links. In Ex-
ample 3 of Section VIII, we illustrate this point by means of
a simulation. Furthermore, one can obtain the following useful
fundamental limits on the best achievable cost values.

Theorem 8: Let us denote the value of performance improve-
ment by adding an edge ewith an arbitrary positive weight to lin-
ear consensus network (6)–(7) by Δρ(L) = ρ(L) − ρ(L+ Le).
Then, the maximum achievable performance improvement is

Δρ(L) ≤ ψ(L†) − ψ
(
L† − re(L)−1Ue

)
(35)

where Ue is given by (33) and the upper bound can be achieved
as w tends to infinity. Moreover, we have the following explicit

fundamental limits:

Δζ1(L) ≤ re(L2)
re(L)

(36)

Δζ2
2 (L) ≤

[
re(L2)
re(L)

]2

− 2
re(L3)
re(L)

. (37)

The result of Theorem 8 asserts that, in general, performance
improvement may not be arbitrarily large by adding only one
new link. In some cases, however, performance improvement
can be arbitrarily good. For instance, for the uncertainty volume
of the output, we have

lim
� (e)→+∞

Δυ(L) = +∞. (38)

The result of Theorem 6 can be utilized to devise a greedy
approximation method by decomposing (14) into k successive
tractable problems in the form of (29). In each iteration, the
Laplacian matrix of the network is updated, and then, optimiza-
tion problem (29) finds the next best candidate link as well as
its location. Since the value of systemic performance measure
can be calculated explicitly in each step using Theorem 6, one
can explicitly calculate the value of systemic performance mea-
sure for the resulting augmented network. This value can be
used to determine the effectiveness of this method. Algorithm 2
summarizes all steps of our proposed greedy algorithm, where
the output of the algorithm is the Laplacian matrix of the re-
sulting augmented network. In Section VIII, we present several
supporting numerical examples.

Remark 1: The optimization problem (29) with performance
measure ζ∞(L) = λ−1

2 was previously considered in [21], where
a heuristic algorithm was proposed to compute an approximate
solution. Later on, another approximate method for this prob-
lem was presented in [20]. Also, there is a similar version of this
problem that is reported in [22], where the author studies the con-
vergence rate of circulant consensus networks by adding some
long-range links. Moreover, a noncombinatorial and relaxed
version of our problem of interest has some connections to the
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sparse consensus network design problem [23]–[25], where they
consider �1-regularized H2 optimal control problems. When the
candidate set Ec is the set of all possible links except the network
links, i.e., Ec = V × V \ E , and the performance measure is the
logarithm of the uncertainty volume, our result reduces to the
result reported in [26].

B. Supermodularity and Guaranteed Performance
Bounds

A systemic performance measure is a continuous function of
link weights on the space of Laplacian matrices Ln . Moreover,
we can represent a systemic performance measure equivalently
as a set function over the set of weighted links. Let us denote by
G(V) the set of all weighted graphs with a common node set V .

Definition 5: For a given systemic performance measure
ρ : Ln → R, we associate a set function ρ̃ : G(V) → R that
is defined as

ρ̃(G) = ρ

(∑

e∈E
w(e)Le

)
= ρ(L)

where L is Laplacian matrix of G = (V, E , w) and Le is the
Laplacian matrix of (V, {e}, 1), which is an unweighted graph
formed by a single link e.

Definition 6: The union of two weighted graphs G1 =
(V, E1 , w1) and G2 = (V, E2 , w2) is defined as follows:

G1 ∨ G2 := (V, E1 ∪ E2 , w)

in which

w(e) :=

{
max{w1(e), w2(e)}, if e ∈ E1 ∪ E2

0 otherwise.
(39)

Definition 7: The intersection of two weighted graphs G1 =
(V, E1 , w1) and G2 = (V, E2 , w2) is defined as follows:

G1 ∧ G2 := (V, E1 ∩ E2 , w)

in which

w(e) :=

{
min{w1(e), w2(e)}, if e ∈ E1 ∩ E2

0 otherwise.

The following definition is adapted from [32] for our graph
theoretic setting.

Definition 8: A set function ρ̃ : G(V) → R is supermodular
with respect to the link set if it satisfies

ρ̃(G1 ∧ G2) + ρ̃(G1 ∨ G2) ≥ ρ̃(G1) + ρ̃(G2). (40)

Theorem 9: Suppose that systemic performance measure ρ :
Ln → R is differentiable and �ρ : Ln → Rn×n is monotoni-
cally increasing with respect to the cone of positive-semidefinite
matrices (i.e.,L1 � L2 =⇒ �ρ(L1) � �ρ(L2)). Then, the cor-
responding set function ρ̃ : G(V) → R, from Definition 5, is
supermodular.

Proof: We know that

d

dt
ρ(L+ tX) = Tr(�ρ(L+ tX)X). (41)

where t ∈ R+ and L,X ∈ Ln . From (41), we get

d

dt

(
ρ(L1 + tX) − ρ(L2 + tX)

)
=

Tr
((

�ρ(L1 + tX) − �ρ(L2 + tX)
)
X
)

(42)

where L1 , L2 ∈ Ln and L1 � L2 . From the monotonicity prop-
erty of �ρ and (42), we get

d

dt

(
ρ(L1 + tX) − ρ(L2 + tX)

) ≤ 0. (43)

Then, by taking integral from both sides of (42), and then using
(43), we have

∫ 1

0

d

dt
ρ(L1 + tX)dt−

∫ 1

0

d

dt
ρ(L2 + tX)dt ≤ 0

which directly implies that

ρ(L1 +X) − ρ(L1) ≤ ρ(L2 +X) − ρ(L2). (44)

On the other hand, the corresponding Laplacian matrices of
G1 , G2 , G1 ∧ G2 , and G1 ∨ G2 are given as follows:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

LG1 :=
∑

e∈E1
w1(e)Le

LG2 :=
∑

e∈E2
w2(e)Le

LG1 ∧G2 :=
∑

e∈E1 ∩E2
min{w1(e), w2(e)}Le

LG1 ∨G2 :=
∑

e∈E1 ∪E2
max{w1(e), w2(e)}Le.

(45)

Based on these definitions, we have

LG1 ∧G2 � LG1 , LG2 � LG1 ∨G2 . (46)

By setting L1 = LG1 ∧G2 , L2 = LG1 , and X = LG2 − LG1 ∨G2 in
inequality (44), we get

ρ(LG1 ∧G2 + LG2 − LG1 ∧G2 ) − ρ(LG1 ∧G2 ) = ρ(LG2 )

−ρ(LG1 ∧G2 ) ≤ ρ(LG1 ∨G2 + LG2 − LG1 ∧G2 ) − ρ(LG1 ∨G2 ).

(47)

According to (44), we have

LG1 ∨G2 + LG1 ∨G2 = LG1 + LG2 . (48)

Therefore, based on equality (48), we can rewrite the right-hand
side of inequality (47) as follows:

ρ(LG1∨G2+LG2−LG1∧G2)−ρ(LG1∨G2)=ρ(LG1)−ρ(LG1∨G2).

From this equality, inequality (47), and Definition 5, we can
conclude (53).

It should be emphasized that the convexity property of a
systemic performance measure ρ implies that �ρ, if it exists, is
a monotone mapping.4 However, this property is not sufficient
for supermodularity of its corresponding set function ρ̃.

4Tr ((�ρ(L1 ) − �ρ(L2 ))(L1 − L2 )) ≥ 0, where L1 , L2 ∈ Ln .
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Example 1: In our first example, we show that the uncer-
tainty volume of the output (71) satisfies conditions of The-
orem 9. The gradient operator of this systemic performance
measure is

�υ(L) = −
(
L+

1
n
Jn

)−1
.

It is straightforward to verify that �υ(L) is monotone with
respect to the cone of positive-semidefinite matrices. Thus, υ(L)
is supermodular.

Example 2: In our second example, we consider a new class
of systemic performance measures that are defined as

mq (L) = −
n∑

i=2

λ
q
i (49)

where 0 ≤ q ≤ 1. According to Theorem 11, this spectral func-
tion is a systemic performance measure, as function −λq for
0 ≤ q ≤ 1 is a decreasing convex function on R+ . Moreover,
its gradient operator, which is given by �mq (L) = qLq−1 , is
monotonically increasing for all 0 ≤ q ≤ 1. Therefore, accord-
ing to Theorem 9, systemic performance measure (49) is su-
permodular over the set of all weighted graphs with a common
node set.

Remark 2: For a given performance measure ρ, there are
several different ways to define an extended set function for ρ.
These set functions may have different properties. For instance,
the extended set function of ζ1 is supermodular over principle
submatrices [33], but it is not supermodular over the set of all
weighted graphs with a common node set (see Definition 5).

For those systemic performance measures that satisfy condi-
tions of Theorem 9, one can provide guaranteed performance
bounds for our proposed greedy algorithm in Section VII-A.
The following result is based a well-known result from [32, Ch.
III, Sec. 3].

Theorem 10: Suppose that systemic performance measure
ρ : Ln → R is differentiable and �ρ : Ln → Rn×n is mono-
tonically increasing with respect to the cone of positive-
semidefinite matrices. Then, the greedy algorithm in Algo-
rithm 2, which starts with Ê as the empty set and at every
step selects an element e ∈ Ec that minimizes the marginal cost
ρ(L+ LÊ + Le) − ρ(L+ LÊ), provides a set Ê that achieves a
(1 − 1/e)-approximation5 of the optimal solution of the com-
binatorial network synthesis problem (14).

Since the class of supermodular systemic performance mea-
sures are monotone, the combinatorial network synthesis prob-
lem (14) is polynomial-time solvable with provable optimality
bounds [32]. Supermodularity is not a ubiquitous property for all
systemic performance measures. Nevertheless, our simulation
results in Section VIII assert that the proposed greedy algorithm
in Algorithm 2 is quite powerful and provides tight and near-
optimal solutions for a broad range of systemic performance
measures.

C. Computational Complexity Discussion

As we discussed earlier, the network synthesis problem (14)
is in general NP-hard. However, this problem is solvable when

5This means that ρ (L+ L̃ )−ρ (L )
ρ (L+L ∗)−ρ (L ) ≥ 1 − 1

e , where L∗ is the optimum

solution and L̃ is the solution of the greedy algorithm, or equivalently,
ρ (L+ L̃ )−ρ (L+L ∗)
ρ (L )−ρ (L+L ∗) ≤ 1

e , where e is Euler’s number.

k = 1, and the best link can be found by running an exhaustive
search over all possible scenarios, i.e., by calculating the value of
a performance measure for all possible p augmented networks,
where p is the number of candidate links. The computational
complexity of evaluating performance of a given linear con-
sensus network depends on the specific choose of a systemic
performance measure. Let us denote computational complex-
ity of a given systemic performance measure ρ : Ln → R by
O (Mρ(n)). In the simple greedy algorithm (see Algorithm 2),
the difference term

ρ(L̃) − ρ
(
L̃+�(e)Le

)
(50)

is calculated and updated for each candidate link at each
step, for the total of k

(
p− k−1

2

)
times. Thus, the total

computational complexity of our simple greedy algorithm is
O (Mρ(n)(p− k−1

2 )k
)

operations. This computational com-
plexity is at most O (Mρ(n)n2k

)
, where p =

(
n
2

)
, i.e., when

the candidate set contains all possible links. The complexity
of the brute-force method is O (Mρ(n)

(
p
k

))
.6 This can be at

most O (Mρ(n)2p/
√
p
)
. Moreover, if k ≤ √

p, then the com-
putational complexity will be O (Mρ(n)pk/k!

)
.

In some occasions, we can take advantage of the rank-one
updates in Theorems 6 and 7, where it is shown that a rank-one
deviation in a matrix results in a rank-one change in its inverse
matrix as well. This helps reduce the computational complexity
of (50) to the order of O(n2) instead of O(n3) operations. As it
is shown in [34], one can apply the rank-one update on the matrix
of effective resistances. As a result, we can update the effective
resistances of all links in order of O(n2). More specifically, the
matrix of effective resistances is given by

R(Lm ) := 1n diag
(
L†,m )+ diag

(
L†,m )1T

n − 2L†,m (51)

for m ∈ {1, 2, 3}, where R(Lm )ij = r{i,j}(Lm ). The update
rule (51) can be obtained by substituting the rank-one update
of (L+ Le)† from (42) into (51) and the mth power of the
rank-one update can be calculated in O(n2) as it can be cast as
only matrix–vector products. Using these facts and the result of
Theorem 7, the computational cost of (50) for systemic perfor-
mance measures ζ1 , ζ2 , and υ can be significantly reduced; more
specifically, the computational complexity of our algorithm
reduces to

O

⎛

⎜
⎝ n3

︸︷︷︸
calculating L †, m ′ s at the beginning

+ n2
︸︷︷︸

rank-one update

× k︸︷︷︸
number of steps

⎞

⎟
⎠ .

For a generic systemic performance measure ρ : Ln → R,
according to Theorem 1, calculating its value requires knowl-
edge of all Laplacian eigenvalues of the coupling graph. It is
known that the eigenvalue problem for symmetric matrices re-
quiresO(n2.376 log n) operations [35]. Suppose that calculating
the value of the spectral function Φ : Rn−1 → R in Theorem
1 needs O (MΦ(n)) operations. Thus, the value of systemic
performance measure ρ(L) in (13), and similarly (50), can be
calculated in O(n2.376 log n+MΦ(n)). Based on this analy-
sis, we conclude that the complexity of the greedy algorithm in

6 This corresponds to calculating the value of a performance measure for all(
p
k

)
possible augmented networks.
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Fig. 1. Interconnection topology of all three graphs, except for their
highlighted blue links, are identical, which show the coupling graph of
the linear consensus network in Example 3. The coupling graph shown in
here is a generic connected graph with 50 nodes and 100 links, which are
drawn by black lines. The optimal links are shown by blue line segments.

Fig. 2. Coupling graph of the network used in Example 4 is shown in
(a) that consists of 60 nodes and 176 links. The location of the optimal
link, highlighted by the blue color, is shown in (b).

Algorithm 2 is at most

O
(
(
n2.376 log n+MΦ(n)

)
(
p− k − 1

2

)
k

)
.

VIII. NUMERICAL SIMULATIONS

In this section, we support our theoretical findings by means
of some numerical examples.

Example 3: This example investigates sensitivity of location
of an optimal link as a function of its weight. Let us consider
a linear consensus network (6)–(7), whose coupling graph is
shown in Fig. 1, endowed by systemic performance measure (59)
with q = 1. The graph shown in Fig. 1 is a generic unweighted
connected graph with n = 50 nodes and 100 links. We solve
the network synthesis problem (29) for the candidate set with
|Ec | = 1

2n(n− 1) that covers all possible locations in the graph.
It is assumed that all candidate links have an identical weight
�0 . We use our rank-one update method in Theorem 7 to study
the effect of �0 on location of the optimal link. In Fig. 1(c),
we observe that by increasing�0 , the optimal location changes.
When �0 = 1, our calculations reveal that the optimal link in
Fig. 1(a), shown by a blue line segment, maximizes re(L2)
among all possible candidate links in set Ec . By increasing the
value of our design parameter to �0 = 1.2 in Fig. 1(b), we
observe that the location of the optimal link moves. In our last
scenario in Fig. 1(c), by setting �0 = 1.6, the optimal link
moves to a new location that maximizes quantity re(L2)/re(L)
among all possible candidate links.

Example 4: The usefulness of our theoretical fundamental
hard limits in Theorem 2 in conjunction with our results in The-
orem 7 is illustrated in Fig. 3. Suppose that a linear consensus
network (6)–(7) with a generic coupling graph with n = 60, as
shown in Fig. 2 (a), is given. Let us consider the network design
problem (29) with systemic performance measure (59) for
q = 1. The set of candidate links is the set of all possible links in
the coupling graph, i.e., |Ec | = 1

2n(n− 1), where it is assumed
that all candidate links have an identical weight �0 = 20. Our

Fig. 3. This plot is discussed in Example 4.

Fig. 4. This is the coupling graph of the network in Example 6 with 30
nodes, where the graph has 50 original (black) links and the candidate
set includes all 15 dashed red line segments.

goal is to compare optimality of our low-complexity update rule
against brute-force search over all |Ec | = 1770 possible aug-
mented graphs. The value of the systemic performance measure
for each candidate graph is marked by blue star in Fig. 3. In this
plot, the black circle highlights the value of performance mea-
sure for the network resulting from the rank-one search (34).
The red-dashed line in Fig. 3 shows the best achievable value
for ζ1 according to Theorem 2. The value of this hard limit can
be calculated merely using Laplacian eigenvalues of the original
graph shown in Fig. 2(a). The location of the optimal link is
shown in Fig. 2(b). One observes from Fig. 3 that our theoretical
fundamental limit justifies near optimality of our rank-one
update strategy (34) for networks with generic graph topologies.

Example 5: This example follows up on our discussion at the
end of Section V, where it is explained that the result of Theorem
2 can be utilized to choose reasonable values for design param-
eter k in the network design problem (14). We explain the pro-
cedure by considering a linear consensus network (6)–(7) with a
given coupling graph by Fig. 2(a). The value of the lower bound
(i.e., hard limit) in (15) is used to form the following quantity:

πk :=
�0 − �k
�0

× 100

that represents the percentage of performance enhancement for
all values of parameter 1 ≤ k ≤ n− 1. Fig. 5 illustrates the
value of πk with respect to four systemic performance measures:
ζ1 , ζ2 , τt , and Iγ . Depending on the desired level of performance,



SIAMI AND MOTEE: GROWING LINEAR DYNAMICAL NETWORKS ENDOWED BY SPECTRAL SYSTEMIC PERFORMANCE MEASURES 2101

Fig. 5. These plots are discussed in Example 5. (a) Spectral zeta function ζ1 . (b) Spectral zeta function ζ2 . (c) Expected transient covariance τt ,
where t = 1. (d) γ-entropy Iγ (.), where γ = 2.

one can compute a sensible value for design parameter k merely
by looking up at the corresponding plots. For instance, in order to
achieve 50% performance improvement, one should add at least
13, 10, 16, and 12 weighted links with respect to ζ1 , ζ2 , τt , and
Iγ , respectively. We verified tightness of this estimate by run-
ning our greedy algorithm in Algorithm 2, where the candidate
set is equal to the set of all possible links with identical weight
10. Our simulation results reveal that by adding 13, 10, 16, and
12 links from the candidate set, the network performance im-
proves by 40.60%, 45.10%, 37.76%, and 40.61% with respect
to ζ1 , ζ2 , τt , and Iγ , respectively. Our theoretical bounds predict
that network performance can be further improved by increasing
weights of the candidate links. In our example, if we increase the
weight from 10 to 500, the network performance boosts by more
than 46% for all mentioned systemic performance measures.

Example 6: We compare optimality gaps of our pro-
posed greedy (see Algorithm 2) and linearization-based (see
Algorithm 1) methods versus brute-force and simple-random-
sampling methods. The brute-force method runs an exhaustive
search to find the global optimal solution of problem (14);
however, it cannot be used for medium- to large-size networks.
In order to make our comparison possible, we consider a
linear consensus network (6)–(7) with n = 30 nodes over
the graph shown in Fig. 4. Weights of all links, both in the
coupling graph and the candidate set, are equal to 1. Our
control objective is to solve the network synthesis problem
(14), where the candidate set consists of 15 links that are shown
by red-dashed lines in Fig. 4. The outcome of our simulation
results is explicated in Fig. 6, where we run our algorithms and
compute the corresponding values for systemic performance
measures for all k = 1, . . . , 15. One observes that our greedy
algorithm performs nearly as optimal as the brute-force method.
This is mainly due to convexity and monotonicity properties
of the class of systemic performance measures that enable
the greedy algorithm to produce near-optimal solutions with
respect to this class of measures. As one expects, our greedy
algorithm outperforms our linearization-based method. It is

noteworthy that the time complexity of the linearization method
is comparably less than the greedy algorithm. The usefulness of
the linearization-based method accentuates itself when weight
of candidate links is small and/or k is large.

IX. DISCUSSION AND CONCLUSION

In the following, we provide explanations for some of the
outstanding and remaining problems related to this paper.

1) Convex relaxation: The constraints of the combinatorial
problem (14) can be relaxed by allowing the link weights
to vary continuously. The relaxed problem will be a spec-
tral convex optimization problem [36]. In some special
cases, such as when the cost function is ζ1 or ζ2 , the re-
laxed problem can be equivalently cast as an SDP problem
[11], [18]. However, for a generic systemic performance
measure, we need to develop some low-complexity spe-
cialized optimization techniques to solve the correspond-
ing spectral optimization problem, which is beyond the
scope of this paper.

2) Higher order approximations: In Section VI, we em-
ployed the first-order approximation of a systemic perfor-
mance measure. One can easily extend our algorithm by
considering second-order approximations of a systemic
performance measure in order to gain better optimality
gaps.

3) Nonspectral systemic performance measures: The class
of spectral systemic performance measures can be ex-
tended to include nonspectral measures as well. This can
be done by relaxing and replacing the orthogonal invari-
ance property by permutation invariance property. The
local deviation error is an example of a nonspectral sys-
temic performance measure [18], [37]. Our ongoing re-
search involves a comprehensive treatment of this class of
measures.
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Fig. 6. These plots compare optimality gaps of five different methods for solving the network synthesis problem (14) in Example 6. (a) Spectral
zeta function ζ1 . (b) Spectral zeta function ζ2 . (c) Hankel norm η. (d) γ-entropy Iγ , where γ = 20 (e) Uncertainty Volume υ. (f) Expected output
covariance τt , where t = 10.

APPENDIX

NOTABLE CLASSES OF SYSTEMIC

PERFORMANCE MEASURES

In the following, we will revisit several existing and widely
used examples of performance measures in linear consensus
networks and prove that they are indeed systemic performance
measures according to the definition.

A. Sum of Convex Spectral Functions

This class of performance measures is generated by forming
summation of a given function of nonzero Laplacian eigenval-
ues.

Theorem 11: For a given matrix L ∈ Ln , suppose that ϕ :
R + → R is a decreasing convex function. Then, the following
spectral function:

ρ(L) =
n∑

i=2

ϕ(λi) (52)

is a systemic performance measure. Moreover, if ϕ is also a ho-
mogeneous function of order −κwith κ > 1, then the following
spectral function:

ρ(L) =

(
n∑

i=2

ϕ(λi)

) 1
κ

(53)

is also a systemic performance measure.
Proof: First, we show that measure (52) is monotone with

respect to the positive-definite cone. If we assume thatL2 � L1 ,
then based on [28, Th. A.1, Sec. 20], it follows that

λi(L2) ≤ λi(L1), for i = 1, 2, . . . , n. (54)

Thus, using (54) and the fact that ϕ(.) is decreasing, we get the
monotonicity property of measure (52). Also, it is not difficult
to show that measure (52) satisfies Property 2. To do so, let L1
and L2 be two Laplacian matrices in Ln . Recall that Λ(Li),
i = 1, 2, is the vector of eigenvalues of Li in ascending order.
According to [28, Th. G.1, Sec. 9], we know that

Λ(αL1 + (1 − α)L2) � αΛ(L1) + (1 − α)Λ(L2) (55)

for every 0 ≤ α ≤ 1, and � denotes the majorization preorder
[28]. Besides, we note that based on [28, Prop. C.1, Sec. 3],
measure (52) is a Schur-convex function. Consequently, using
this property and (55), we have

ρ(αL1 + (1 − α)L2) =
n∑

i=2

ϕ (λi(αL1 + (1 − α)L2))

≤
n∑

i=2

ϕ
(
αλi(L1) + (1 − α)λi(L2)

)
.

From (58) and the desired convexity property of ϕ(.), we get
the convexity property as follows:

ρ(αL1 + (1 − α)L2) ≤
n∑

i=2

ϕ (αλi(L1) + (1 − α)λi(L2))

≤ α

n∑

i=2

ϕ (λi(L1))

+(1 − α)
n∑

i=2

ϕ (λi(L2))

= αρ(L1) + (1 − α)ρ(L2)



SIAMI AND MOTEE: GROWING LINEAR DYNAMICAL NETWORKS ENDOWED BY SPECTRAL SYSTEMIC PERFORMANCE MEASURES 2103

for every 0 ≤ α ≤ 1. Finally, systemic measure (52) is orthog-
onal invariant because it is a spectral function. Hence, measure
(52) satisfies all properties of Definition 4. This completes the
proof of the first part.

Next, we show that measure (53) satisfies Properties 1–3 given
by Definition 4. Similar to the previous case, it is straightforward
to verify that measure (53) has Property 1. Now, we show that
measure (53) has Property 2, i.e., it is a convex function over the
set of Laplacian matrices. By hypothesis,ϕ(.) is a homogeneous
function of order −κ; therefore, we have

ϕ(λi) = λ−κ
i ϕ(1). (56)

Using (53) and (56), we get

ρ(L) = K

(
n∑

i=2

λ−κ
i

) 1
κ

(57)

where K = κ
√
ϕ(1). It is well known that the function (57) is

convex for λi > 0, where i = 2, . . . , n and κ > 1. Based on the
proof of the first part, measure ρκ(.) is a Schur-convex function.
Consequently, we get

ρ(αL1 + (1 − α)L2) ≤

K

(
n∑

i=2

(
αλi(L1) + (1 − α)λi(L2)

)−κ
) 1

κ

. (58)

Now, using (59) and the convexity of (57) with respect to λis,
we have

ρ(αL1 + (1 − α)L2)

≤ K

(
n∑

i=2

(
αλi(L1) + (1 − α)λi(L2)

)−κ
) 1

κ

≤ αρ(L1) + (1 − α)ρ(L2).

This completes the proof. �
There are several important examples of performance mea-

sures that belong to this class.
1) Spectral Zeta Functions: For a given network (6)–

(7), its corresponding spectral zeta function of order q ≥ 1 is
defined by

ζq (L) :=
( n∑

i=2

λ
−q
i

)1/q

(59)

where λ2 , . . . , λn are eigenvalues of L [38]. According to
Assumption 2, all the Laplacian eigenvalues λ2 , . . . , λn are
strictly positive, and as a result, function (59) is well defined.
The spectral zeta function of a graph captures all its spectral
features. In fact, it is straightforward to show that every two
graphs in Ln with identical zeta functions for all parameters
q ≥ 1 are isospectral.7

Since ϕ(λ) = λ−q for q ≥ 1 is a decreasing convex function,
the spectral function (59) is a systemic performance measure

7This is because for a given graph with n nodes, Laplacian eigenvalues
λ2 , . . . , λn can be uniquely determined by using (59) and having the value of
ζq (L) for n − 1 distinct values of q. We refer to algebraic geometric tools for
existing algorithms to solve this problem [39].

according to Theorem 11. The systemic performance measure
1
2 ζ1(L) is equal to the H2-norm squared of a first-order con-
sensus network (6)–(7) and 1√

2
ζ

2
(L) equal to the H2-norm of a

second-order consensus model of a network of multiple agents
(cf., [2]).

2) Gamma Entropy: The notion of gamma entropy arises
in various applications such as the design of minimum entropy
controllers and interior point polynomial-time methods in con-
vex programming with matrix norm constraints [40]. As it is
shown in [41], the notion of gamma entropy can be interpreted
as a performance measure for linear time-invariant systems with
random feedback controllers by relating the gamma entropy to
the mean-square value of the closed-loop gain of the system.

Definition 9: The γ-entropy of network (6)–(7) is defined as

Iγ (L) :=
⎧
⎨

⎩

−γ 2

2π

∫ ∞
−∞ log det

(
I − γ−2G(jω)G∗(jω)

)
dω, for γ ≥ ‖G‖H∞

∞, otherwise

where G(jω) is the transfer function of network (6)–(7) from ξ
to y.

Theorem 12: For a given linear consensus network (6)–(7),
the value of the γ-entropy can be explicitly computed in terms
of network’s Laplacian eigenvalues as follows:

Iγ (L) =

⎧
⎪⎨

⎪⎩

n∑

i=2

fγ (λi), γ ≥ λ−1
2

∞, otherwise

(60)

where fγ (λi) = γ2
(
λi −

(
λ2
i − γ−2

) 1
2

)
. Moreover, the γ-

entropy Iγ (L) is a systemic performance measure.
Proof: First, we obtain the transfer function of network (6)–

(7) from ξ to y. In order to do that, let us rewrite the network
in its disagreement form (65)–(67) (see [42] for more details).
Then, it follows that

G(s) = Mn

(
sIn + L+

1
n
Jn

)−1

Mn

= MnUdiag

[
1

s+ 1
,

1
s+ λ2

, . . . ,
1

s+ λn

]
UTMn

= Udiag

[
0,

1
s+ λ2

, . . . ,
1

s+ λn

]
UT (61)

where U is the corresponding orthonormal matrix of eigenvec-
tors of L. Now, we calculate the γ-entropy by substituting the
transfer function (61) in (60) as follows:

Iγ (G) =
−γ2

2π

∫ ∞

−∞
log det

(
In − γ−2G(jω)G∗(jω)

)
dω

=
−γ2

2π

∫ ∞

−∞
log det

(
In − γ−2G(jω)G∗(jω)

)
dω.

Then, using the fact that UUT = In and (61), one can write

log det
(
In − γ2G(jω)G∗(jω)

)
= log

n∏

i=2

(
1 − γ−2

λ2
i + ω2

)
.

(62)
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Moreover, we know that
∫ ∞

−∞
log
(

1 − γ−2

λ2
i + ω2

)
dω = −γ2

(
λi −

(
λ2
i − γ−2) 1

2
)

for γ ≥ λ−1
i . Therefore, based on this result and (62), we get the

desired result

−
n∑

i=2

∫ ∞

−∞
log
(

1 − γ−2

λ2
i + ω2

)
dω

=
n∑

i=2

γ2
(

λi −
√

λ2
i − γ−2

)
(63)

for γ ≥ λ−1
2 . Note that fγ (.) is a convex decreasing function

in [γ−1 ,∞); therefore, according to Theorem 11 and (63), the
γ-entropy Iγ (L) is a systemic performance measure. �

The following result presents the connection between the γ-
entropy measure and the H2-norm of the network.

Theorem 13: The following equality holds for the γ-entropy
measure of network (6)–(7)

lim
γ→∞ Iγ (L) =

1
2

n∑

i=2

λ−1
i = ‖G‖2

H2
= lim

t→∞ E
{
yT(t)y(t)

}

where G(.) is the transfer function of network (6)–(7).
3) Expected Transient Output Covariance: We consider

a transient performance measure at time instant t > 0 that is
defined by

τt(L) := E
{
yT(t)y(t)

}
(64)

where it is assumed that each ξi(t) for all t ≥ 0 is a white
Gaussian noise with zero mean and unit variance and all ξi s are
independent of each other.

In the following, we show that this performance measure is a
spectral function of Laplacian eigenvalues.

Theorem 14: For a given linear consensus network (6)–(7),
the transient measure can be expressed as

τt(L) =
n∑

i=2

1 − e−λi t

2λi
. (65)

Moreover, τt(L) is a systemic performance measure for all
t > 0.

We note that when t tends to infinity, the value of the transient
performance measure becomes equal to the H2-norm squared
of the network, i.e., τ∞(L) = ‖G‖2

H2
.

4) Hankel Norm: The Hankel norm of a network with (6)–
(7) and transfer function G(jω) from ξ to y is defined as the
L2-gain from past inputs to the future outputs, i.e.,

‖G‖2
H := sup

ξ∈L2 (−∞,0]

∫∞
0 yT(t)y(t)dt
∫ 0
−∞ ξT(t)ξ(t)dt

.

The value of the Hankel norm of network (6)–(7) can be equiv-
alently computed using the Hankel norm of its disagreement
form [43] that is given by

ẋd(t) = −Ld xd(t) +Mn ξ(t) (66)

y(t) = Mnxd(t) (67)

where the disagreement vector is defined by

xd(t) := Mn x(t) = x(t) − 1
n
Jn x(t). (68)

The disagreement network (66)–(67) is stable as every eigen-
value of the state matrix −Ld = −(L+ 1

n Jn ) has a strictly
negative real part. One can verify that the transfer functions
from ξ(t) to y(t) in both realizations are identical. Therefore,
the Hankel norm of the system from ξ(t) to y(t) in both repre-
sentations is well defined and equal and is given by [44]

η(L) := ‖G‖H =
√

λmax(PQ) (69)

where the controllability Gramian P is the unique solution of
(
L+

1
n
Jn

)
P + P

(
L+

1
n
Jn

)
−Mn = 0

and the observability Gramian Q is the unique solution of

Q
(
L+

1
n
Jn

)
+
(
L+

1
n
Jn

)
Q−Mn = 0.

Theorem 15: The value of the Hankel norm of consensus
network (6)–(7) is equal to η(L) = 1

2 λ−1
2 and it is a systemic

performance measure.
5) Uncertainty Volume: The uncertainty volume of the

steady-state output covariance matrix of consensus network (6)–
(7) is defined by

|Σ| := det
(
Y∞ +

1
n
Jn

)
(70)

where Y∞ = limt→∞ E
{
y(t)yT(t)

}
. This quantity is widely

used as an indicator of the network performance [11], [45].
Since y(t) is the error vector that represents the distance from
consensus, the quantity (70) is the volume of the steady-state
error ellipsoid.

Theorem 16: For a given consensus network (6)–(7)
with Laplacian matrix L, the logarithm of the uncertainty
volume, i.e.,

υ(L) := log |Σ| = (1 − n) log 2 −
n∑

i=2

log λi (71)

is a systemic performance measure.

B. Hardy–Schatten Norms of Linear Systems

The p-Hardy–Schatten norm of network (6)–(7) for 1 < p ≤
∞ is defined by

‖G‖Hp
:=

{
1
2π

∫ ∞

−∞

n∑

k=1

σk (G(jω))pdω

} 1
p

(72)

where G(jω) is the transfer matrix of the network from ξ to
y and σk (jω) for k = 1, . . . , n are singular values of G(jω).
It is known that this class of system norms captures several
important performance and robustness features of linear time-
invariant systems [46]–[48]. For example, a direct calculation
shows [14] that the H2-norm of linear consensus network (6)–

(7) can be expressed as ‖G‖H2 =
( 1

2

∑n
i=2 λ−1

i

) 1
2 . This norm

has also been interpreted as a notion of coherence in linear
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consensus networks [1]. The H∞-norm of network (6)–(7) is an
input–output system norm [49], and its value can be expressed
as

‖G‖H∞ = λ−1
2 (73)

where λ2 is the second smallest eigenvalue of L, also known
as the algebraic connectivity of the underlying graph of the
network. The H∞-norm (73) can be interpreted as the worst
attainable performance against all square-integrable disturbance
inputs [49].

Theorem 17: The p-Hardy–Schatten norm of a given con-
sensus network (6)–(7) is a systemic performance measure for
every exponent 2 ≤ p ≤ ∞. Furthermore, the following identity
holds:

‖G‖Hp
= α0

(
ζp−1(L)

)1− 1
p (74)

where α−1
0 = p

√
−β( p2 ,− 1

2 ) and β : R × R → R is the well-
known Beta function.

Proof: We utilize the disagreement form of the network that
is given by (66) and (67) and the decomposition (61) to compute
the Hq -norm of G(jω) as follows:

‖G‖pHp
=

1
2π

∫ ∞

−∞

n∑

k=1

σk (G(jω))p dω

=
1
2π

n∑

i=2

∫ ∞

−∞

(
1

ω2 + λ2
i

) p
2

dω

=
−1

β( p2 ,− 1
2 )

n∑

i=2

1
λ
p−1
i

=
−1

β( p2 ,− 1
2 )
ζp−1(L)p−1

for all 2 ≤ p ≤ ∞. Now, we show that measure (74) satis-
fies Properties 1–3 in Definition 4. Similar to the proof of
Theorem 11, it is straightforward to verify that measure (74)
has Property 1. Next, we show that measure (74) has Property
2, i.e., it is a convex function over the set of Laplacian matrices.
We then show that for all 2 ≤ p ≤ ∞, the following function
f : Rn−1

++ → R is concave:

f(x) =

(
n−1∑

i=1

x−p+1
i

) 1
−p + 1

where x = [x1 , x2 , . . . , xn−1 ]T. To do so, we need to show
�2f(x) � 0, where the Hessian of f(x) is given by

∂2f(x)
∂x2

i

= − p

xi

(
f(x)
xi

)p
+

p

f(x)

(
f(x)2

x2
i

)p

and

∂2f

∂xi∂xj
=

p

f(x)

(
f(x)2

xixj

)p
.

The Hessian matrix can be expressed as

�2f(x) =
p

f(x)

(
−diag(z)

1 + p
p + zzT

)

where

z = [(f(x)/x1)
p , . . . , (f(x)/xn )p ]T .

To verify �2f(x) � 0, we must show that for all vectors v,
vT�2f(x)v ≤ 0. We know that

vT�2f(x)v=
p

f(x)

⎛

⎝−
n−1∑

i=1

z
p −1
p

i

n−1∑

i=1

z
p + 1
p

i v2
i +

(
n−1∑

i=1

vizi

)2
⎞

⎠ .

Using the Cauchy–Schwarz inequality aTb ≤ ‖a‖2‖b‖2 , where

ai =
(
f(x)
xi

) p −1
2

= z
p −1
2 p
i

and bi = z
p + 1
2 p
i vi , it follows that vT�2f(x)v ≤ 0 for all v ∈

Rn−1 . Therefore, f(x) is concave. Let us define h(x) = x
−p + 1
p ,

where x ∈ R. Since f(.) is positive and concave, and h is
decreasing convex, we conclude that h(f(.)) is convex [50].
Hence, we get that ‖G‖Hp

is a convex function with respect to
the eigenvalues of L. Since this measure is a symmetric closed
convex function defined on a convex subset of Rn−1 , i.e., n− 1
nonzero eigenvalues, according to [30], we conclude that ‖G‖Hp

is a convex of function Laplacian matrix L. Finally, measure
‖G‖Hp

is orthogonal invariant because it is a spectral function
as shown in (74). Hence, this measure satisfies all properties of
Definition 4. This completes the proof. �
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