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a b s t r a c t

In this paper, we obtain new lower and upper bounds for the H2-norm of a class of linear time-invariant
systems subject to exogenous noise inputs. We show that the H2-norm, as a performance measure, can
be tightly bounded from below and above by some spectral functions of state and output matrices of
the system. In order to show the usefulness of our results, we calculate bounds for the H2-norm of some
networkmodelswith specific coupling or graph structures, e.g., systemswith normal statematrices, linear
consensus networks with directed graphs, and cyclic linear networks. As a specific example, theH2-norm
of a linear consensus network over a directed cycle graph is computed and shown how its performance
scales with the network size. Our proposed spectral bounds reveal the important role and contribution
of fast and slow dynamic modes of a system in the best and worst achievable performance bounds under
white noise excitation. Finally, we use several numerical simulations to show the superiority of our
bounds over the existing bounds in the literature.

© 2017 Elsevier Ltd. All rights reserved.
1. Introduction

The performance analysis of noisy linear systems has been the
focus of numerous studies over the past few decades (Bamieh &
Dahleh, 2003; Bamieh, Jovanović, Mitra, & Patterson, 2012; Chan-
dra, Buzi, & Doyle, 2011; Doyle, Glover, Khargonekar, & Francis,
1989; Siami & Motee, 2013a) and the references therein. In a ma-
jority of these works, quantifying the corresponding performance
measures reduces to solving some Algebraic Lyapunov Equations
(ALEs). Although there are several efficient methods to compute
the exact solutions of ALEs, their computational complexity in-
creases rapidly when dealing with linear systems with large di-
mensions. Thus, such algorithms are only applicable to systems of
moderate size (Benner, Li, & Penzl, 2008). There are some meth-
ods to estimate bounds on the solutions of ALEs (Komaroff, 1988;
Kwon, Youn, & Bien, 1985; Lee, 1997; Mori, Fukuma, & Kuwahara,
1987; Wang, Kuo, & Hsu, 1986). Bounds on the solution of an ALE
can be used as an approximation of its exact solution, especially for
large-scale linear networks as these bounds can usually be calcu-
lated through inexpensive computations. In Kwon, Moon, and Ahn
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(1996), authors summarize some of the previous results up to that
date.

The H2-norm of a noisy linear time-invariant system, from
its noise input to the output, has been considered as a vi-
able performance measure in the literature (Bamieh & Dahleh,
2003; Doyle et al., 1989; Siami & Motee, 2013a). This perfor-
mance measure can be calculated using the solution of an ALE.
In this paper, we derive explicit lower and upper bounds for this
performance measure. Our proposed bounds are spectral func-
tions of state and output matrices of the system. Furthermore,
our proposed bounds are utilized to quantify bounds on the
H2-norm squared of some network models with specific dynami-
cal structures, e.g., systems with normal state matrices, linear con-
sensus networks with directed graphs, and cyclic linear networks
with negative feedback. As an important application, our results
are applied to a general class of linear consensus networks over
directed graphs. Most recent works (Bamieh et al., 2012; Siami
& Motee, 2015) investigate the performance of noisy linear con-
sensus networks over undirected graphs. We prove that our per-
formance bounds are tight if the underlying directed graph of
the networks is strongly connected and balanced. Moreover, we
apply our results to a class of cyclic networks with asymmetric
structures. These networks has been used to model certain bio-
chemical pathways (Kholodenko, 2000).Weparticularly showhow
the H2-norm of a cyclic linear dynamical network scales with the
network size. It is shown that when all subsystems are identical,
the network attains the best achievable performance among all
cyclic networks with the same secant criterion. Finally, we com-
pare our proposed bounds to all existing bounds in the literature
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and use some numerical simulations to show that our bounds are
tighter than all previously reported bounds in Fang, Loparo, and
Feng (1997), Kwon et al. (1996) and Lee (1997).

2. Mathematical notations

R denotes the set of real numbers, C denotes the set of complex
numbers, Re{.} denotes the real part of a complex number, (.)T

denotes transpose and (.)H denotes Hermitian transpose. Matrix
In ∈ Rn×n is the identity matrix and matrix 0 is the matrix of
all zeros. The n × 1 vector of all ones is denoted by 1n and the
centering matrix is defined by Mn := In −

1n1Tn
n . For a square

matrix A, Tr(A) refers to the summation of on-diagonal elements
of A. We write λmax(M) (resp., λmin(M)) for the maximum (resp.,
minimum) eigenvalue of M , diag[v] for a square diagonal matrix
with the elements of vector v on its diagonal and zero everywhere
else, and ∥ · ∥2 for the 2-norm of a vector. The eigenvalues of
a matrix X ∈ Rn×n are indexed according to their real-parts in
ascending order, i.e., Re{λ1(X)} ≤ Re{λ2(X)} ≤ · · · ≤ Re{λn(X)}.
E[v] stands for the expected value of random variable v. We
employ the big omega notation in order to generalize the concept
of asymptotic lower bound in the same way as O generalizes
the concept of asymptotic upper bound. We adopt the following
definition according to (Knuth, 1976):

f (n) = Ω(g(n)) ⇔ g(n) = O(f (n)), (1)

where O represents the big O notation. In the left hand side of (1),
theΩ notation implies that f (n) grows at least of the order of g(n).

3. H2-norm of noisy linear systems

The steady-state variance of outputs of linear systems driven
by external stochastic disturbances can be regarded as a measure
of performance. We consider a linear time-invariant system

ẋ(t) = Ax(t) + ξ(t), (2)
y(t) = Cx(t), (3)

with x(0) = 0, where x ∈ Rn is the state and y ∈ Rm is the output
of the system. For all linear systems in this paper, it is assumed that
the input signal ξ ∈ Rn is awhite noise processwith zeromean and
identity covariance, i.e.,

E

ξ(t)ξ T(τ )


= Inδ(t − τ), (4)

where δ(.) is the delta function. It is assumed that the state matrix
A is Hurwitz.

Definition 1. The H2-norm of linear system (2)–(3) from ξ to y is
defined as the square root of the following quantity

ρss (A;Q ) := lim
t→∞

E

xT(t)Qx(t)


, (5)

where Q = CTC .

For unstable linear systems, the outputs of the system have finite
steady-state variance as along as the unstablemodes of the system
are not observable from the output of the system. The value of
performance measure (5) for (2)–(3) can be quantified as

ρss (A;Q ) = Tr(P), (6)

where P is the unique solution of the following ALE

PA + ATP + Q = 0. (7)
4. New spectral bounds on the H2-norm

For simplicity of our representations, we present our results for
the performance measure (5), instead of the H2-norm. According
to Definition 1 by taking a simple square root, all results can be
converted to bounds for the H2-norm.

Theorem 2. Suppose that linear system (2)–(3) is stable with input
noise covariance (4) and Q = In. Then, we have

n
i=1

−1
2Re{λi(A)}

≤ ρss (A;Q ) . (8)

The lower bound in (8) is achieved if and only if A is normal, i.e., ATA =

AAT. In addition, if the symmetric part of the state matrix A, defined by
As := (AT

+ A)/2, is Hurwitz, then we get

ρss (A;Q ) ≤

n
i=1

−1
2λi(As)

. (9)

Proof. Since A is Hurwitz, all its eigenvalues have strictly negative
real parts. Therefore, the unique solution of ATP + PA+ In = 0, can
be expressed in the following closed form

P =


∞

0
eA

TteAtdt. (10)

According to Schur decomposition theorem (Horn & Johnson,
1990), there exists a unitary matrix V ∈ Cn×n such that A =

V (Γ + N)VH where Γ = diag [λ1(A), . . . , λn(A)], N is strictly
upper triangular, and VH is the conjugate transpose of V . Let us
consider the integrand of (10)

Tr(eA
TteAt) = Tr(e(Γ H

+NH)tVHVe(Γ +N)tVHV )

= Tr(VHVe(Γ H
+NH)te(Γ +N)t)

= Tr(Ve(Γ H
+NH)te(Γ +N)tVH). (11)

Furthermore, we have

e(Γ +N)t
= eΓ t

+ Mt and e(Γ H
+NH)t

= eΓ Ht
+ MH

t , (12)

where Mt is an upper-triangular Nilpotent matrix. From (12), we
have

Tr(e(Γ H
+NH)te(Γ +N)t) = Tr(eΓ teΓ Ht

+ MtMH
t )

≥ Tr(e(Γ H
+Γ )t). (13)

From (11) and (13), it follows that

Tr(eA
TteAt) = Tr(Ve(Γ H

+NH)te(Γ +N)tVH)

≥ Tr(e(Γ H
+Γ )t) = Tr(e2Re{Γ }t). (14)

SinceRe{λi(A)} < 0 for all i = 1, . . . , n, we can conclude from (10)
and (14) that

Tr(P) =


∞

0
Tr(eĀ

TteĀt)dt ≥

n
i=1

−1
2Re{λi(A)}

. (15)

In the last inequality, we apply the fact that the trace and sum
operators are linear and they can commute with the integral. The
lower bound is achieved if and only if equalities in (14) and (13)
hold, or equivalently, A is a normal matrix, i.e., ATA = AAT. In order
to prove inequality (9), we first use Bernstein inequality (Bernstein,
1988)

Tr(eA
TteAt) ≤ Tr(e(AT+A)t). (16)
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Then, by taking an integral from both sides of (16) we get

Tr(P) =


∞

0
Tr(eA

TteAt)dt ≤


∞

0
Tr(e(AT+A)t)dt. (17)

According to our assumptions A + AT is Hurwitz. Therefore, using
this fact and (17) we conclude that

Tr(P) ≤


∞

0
Tr(e(AT+A)t)dt =

n
i=1

−1
2λi(As)

. �

The following theorem shows that the lower and upper bounds
in Theorem 2 can be tightened further by assumingmore structure
on the state matrix.

Theorem 3. Suppose that linear system (2)–(3) is stable with input
noise covariance (4) and normal state matrix A. Then,

n
i=1

−λn−i+1(Q )

2Re{λi(A)}
≤ ρss (A;Q ) ≤

n
i=1

−λi(Q )

2Re{λi(A)}
. (18)

Moreover, both bounds in (18) are achieved if Q has n identical
eigenvalues.

Proof. Every symmetric matrix Q can be decomposed as Q =

UDUT, where UUT
= UTU = I and D = diag [λ1(Q ), . . . λn(Q )].

Thus, we can rewrite (7) as

ĀTP̄ + P̄ Ā + D = 0, (19)

where Ā = UTAU and P̄ = UTPU . Since A is Hurwitz, the unique
solution of (19) can be expressed by

P̄ =


∞

0
eĀ

TtDeĀtdt. (20)

Since Ā is normal, there exists a unitary matrix V̄ ∈ Cn×n such that
Ā = V̄Γ V̄H, where Γ = diag [λ1(A), . . . , λn(A)] and V̄H is the
conjugate transpose of V̄ . Next, let us consider the integrand of (20)

Tr(eĀ
TtDeĀt) = Tr(eĀ

HtDeĀt)

= Tr(eΓ Ht V̄HDV̄eΓ t V̄HV̄ )

= Tr(V̄HDV̄e(Γ H
+Γ )t). (21)

Weobserve that V̄HDV̄ and e(Γ H
+Γ )t areHermitian. Thus, according

to (Lasserre, 1995, Theorem. II. 2), we get

Tr(V̄HDV̄e(Γ H
+Γ )t) ≥

n
i=1

λn−i+1(Q )e2Re{λi(A)}t . (22)

Since Re{λi(A)} ≠ 0 for all i = 1, . . . , n, from (20) and (22) we
have

Tr(P) ≥


∞

0

n
i=1

λn−i+1(Q )e2Re{λi(A)}tdt

= −

n
i=1

λn−i+1(Q )

2Re{λi(A)}
. (23)

In the last inequality, we apply the fact that the trace and sum
operators are linear and they can be interchanged by the integral.
When A is normal, then λi(A + AT) = 2Re{λi(A)}. This is because
according to the Schur decomposition for normal matrices, there
exists a unitary V ∈ Cn×n such that A = VΓ VH, where
Γ = diag{λ1(A), . . . (A), λn(A)} and VH denotes the conjugate
transpose of matrix V . Using this fact, it follows that

As =
A + AH

2
= V


Γ + Γ H

2


VH

= Vdiag

Re{λ1(A)}, . . . ,Re{λn(A)}


VH. (24)

This implies that λi(As) = Re{λi(A)} for all i = 1, . . . , n. In order to
prove the RHS inequality in (18), we use (Komaroff, 1992, Corollary
2.1.1), which gives us the upper bound in (18). When Q has
identical eigenvalues, then the upper and lower bounds have equal
values; therefore, both bounds in (8) are achieved. �

All symmetric and orthogonal matrices are examples of normal
matrices. One of the outcomes of Theorem 3 is that when A
is normal and Q has n identical eigenvalues, the value of the
performance measure (5) is exactly equal to the upper and lower
bounds in (18) and can be calculated as a function of eigenvalues
of the symmetric part of A or equivalently the real parts of
eigenvalues of A.

5. Applications to some network models

In this section, we apply the results of the previous section to
some systems with specific interconnection topologies. One of the
challenging problems in the area of linear dynamical networks is
to discover relationships between theH2-normof a linear network
and the structure of its underlying interconnection topology. In
general, carrying out such network analysis problems is difficult,
if not impossible. In the following, we show that because of the
particular functional form of bounds in Theorems 2 and 3, one
can exploit structural properties of some classes of linear time-
invariant networks in order to calculate their H2-norm bounds in
more explicit forms and relate them to their graph topologies.

5.1. Linear consensus networks over directed graphs

We consider a class of linear consensus networks where the
interconnection topology between subsystems is defined using a
directed graph (Olfati-saber, Fax, & Murray, 2007; Siami & Motee,
2016). This class of networks can be modeled by (2)–(3) with
A = −L, in which L is the Laplacian matrix of the underlying
directed graph. We assume that all directed graphs in this section
are weighted and strongly connected (Bang-Jensen & Gutin, 2008).
As a result, we have λ1(L) = 0 and Re{λi(L)} > 0 for all
n = 2, . . . , n. In order to guarantee a well-defined and bounded
H2-norm for this class of networks, it is further assumed that only
stable modes of the network are observable from the output. We
stress that in both Theorems 2 and 3, it is assumed that matrix A is
Hurwitz. Next result extends Theorem 2 tomarginally stable linear
consensus networks over directed graphs.

Theorem 4. Consider a linear system (2)–(3) with A = −L and
input noise covariance (4), where L corresponds to Laplacian matrix
of a directed weighted graph that is strongly connected and balanced.
Then, it follows that

n
i=2

1
2Re{λi(L)}

≤ ρss (−L;Q ) ≤

n
i=2

1
λi(L + LT)

, (25)

where Q = Mn is the centering matrix. Moreover, the lower bound
in (25) is achieved if and only if L is normal.

Proof. First, we show that if the underlying graph is balanced and
strongly connected, then L + LT has only one zero eigenvalue and
the rest of them are strictly positive. Since the underlying graph
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is balanced, the row sum and column sum of Laplacian matrix
L is zero. Therefore, L + LT has zero row and column sums and
it can be considered as Laplacian matrix of an undirected graph.
However, this undirected graph is connected because L is the
Laplacian matrix of a strongly connected graph. As a result, L + LT
has only one zero eigenvalue, i.e.,λ1(L+LT) = 0 andλ2(L+LT) > 0.
Now, let us define the disagreement vector by

xd(t) := Mnx(t) = x(t) −
1
n1n1T

nx(t). (26)

By multiplying a vector by the centering matrix, we actually
subtract the mean of all the entries of the vector from each entry.
The dynamics of linear network (2)–(3) with respect to the new
state transformation (26) is so-called disagreement form of the
network that is given by

ẋd(t) = −

L +

1
n1n1T

n


xd(t) + Mnξ(t), (27)

y(t) = xd(t). (28)

It can be shown that the transfer function of the network from
ξ to y stays invariant under state transformation (26) (Siami &
Motee, 2016). We show that (27)–(28) and the following system
have identical performance measure (5):

ẋd(t) = −

L +

1
n1n1T

n

T
xd(t) + ξ(t), (29)

y(t) = Mnxd(t). (30)

Both state matrices in (27) and (29) are Hurwitz. Therefore, the
H2-normof both systems from ξ to y arewell-defined. The squared
H2-norm of (27)–(28) is given by ρss(A,Q ) =

1
2Tr(P), where P is

the unique solution of

P

L +

1
n1n1T

n


+

L +

1
n1n1T

n

T
P = Mn. (31)

The squared H2-norm of (29)–(30) is given by

lim
t→∞

E

yT(t)y(t)


=

1
2
Tr(Po), (32)

where Po is the unique solution of
L +

1
n1n1T

n

T
Po + Po


L +

1
n1n1T

n


= Mn. (33)

It is evident that both equations (31) and (33) return identical
unique solutions, i.e., Po = P . Hence, by applying Theorem 2 to
system (29)–(30), we get the desired result. �

The class of directed graphs with normal Laplacianmatrices are
balanced, but vice versa is not true in general.

Theorem 5. Let us consider a linear consensus network over a
strongly connected graph with Laplacian matrix L. If we assume that
L is normal and Q = CTC with C1 = 0, then it follows that

n
i=2

λi(Q )

2Re{λi(L)}
≤ ρss (−L;Q ) ≤

n
i=2

λn−i+2(Q )

2Re{λi(L)}
. (34)

Moreover, the lower and upper bounds in (34) are achieved if and only
if Q = q


In −

1
n1n1T

n


for all q ≥ 0.

The proof of Theorem 5 can be derivedwith somemodifications
from the proofs of Theorems 3 and 4. Similar to the proof of
Theorem 4, first we need to form the disagreement network, and
then, utilize Theorem 3 to conclude the proof.

Example 6. Let us consider a consensus network with a directed
cycle graph given by Fig. 1, i.e., all the edges being oriented in the
same direction with positive weight w. Without loss of generality,
we may assume that w = 1. The Laplacian matrix of this graph is
denoted by Lc which is a circulant matrix. According to results of
Fig. 1. Schematic diagram of a linear consensus network with a directed cycle
graph with n agents. Each agent i is subject to stochastic disturbance ξi .

Fig. 2. Schematic diagram of a noisy cyclic network. The dashed link indicates a
negative (inhibitory) feedback.

Norman (1973), the corresponding Laplacian eigenvalues are given
by

λk(Lc) = 1 + e
iπ


1−

(−1)k2

k
2


n


, (35)

where k = 1, . . . , n. As a result, their real parts can be calculated
as

Re{λk(Lc)} = 1 + cos


π −
(−1)k2


k
2


π

n


= 2 sin


2π


k
2


n


.

Since the corresponding underlying graph is strongly connected
and its Laplacian matrix is normal, we can apply Theorem 5 to get
n

k=2

λk(Q )

2 sin


2π


k
2


n

 ≤ ρss (−Lc;Q ) ≤

n
k=2

λn−k+2(Q )

2 sin


2π


k
2


n

 .

When Q = In−
1
n1n1T

n, the performancemeasure can be calculated

explicitly as a function of network size as ρss (−Lc;Q ) =
n2−1
12 .

According toDefinition 1,we conclude that theH2-normof a linear
consensus network with directed cycle graph deteriorates by O(n)
as network size gets larger.

5.2. Linear networks with cyclic interconnection topology

The class of cyclic networks has been studied in the context of
systems biology, e.g., in autocatalytic pathway with ring topology
(Arcak& Sontag, 2007; Siami &Motee, 2013b; Siami,Motee, & Buzi,
2013; Tyson & Othmer, 1978). In order to obtain analytical bounds
using our results from Section 4, we limit our attention to the class
of linear cyclic networks shown in Fig. 2. We can represent the
dynamics of the overall cyclic network in the compact canonical
form (2)–(3) with the following state matrix

A =


−a 0 · · · 0 −cn
c1 −a · · · 0 0
...

...
. . .

...
...

0 0 · · · −a 0
0 0 · · · cn−1 −a

 , (36)

and output matrix C = In. In the next theorem, we use our results
in Section 4 to exploit structural properties of this class of linear
dynamical networks in order to compute their H2-norm bounds.

Theorem 7. For the cyclic linear dynamical network with state
matrix (36) and output matrix C = In, let us define c := n

√
c1c2 · · · cn

and assume that the stability condition γ := a/c > cos(π/n) holds.
Then the corresponding performance measure is lower bounded by

ρss (A;Q ) ≥ L(n, β, c), (37)
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where

L(n, β, c) =



n tan β

2

2c sin β

n

if γ < 1

n2

4c
if γ = 1

n tanh β

2

2c sinh β

n

if γ > 1

(38)

and

β :=


arcos(γ )n if γ ≤ 1
arcosh(γ )n if γ > 1. (39)

The equality in (37) is achieved if and only if c1 = · · · = cn, which
means that all subsystems of the network are identical.

Proof. The stability condition γ > cos(π/n) implies that A is
Hurwitz (Arcak & Sontag, 2007; Tyson & Othmer, 1978). Therefore,
the H2-norm squared is well-defined and finite. The characteristic
polynomial of A is given by

(λ + a)n + c1c2 · · · cn = 0. (40)

Therefore, the eigenvalues of the matrix are

λk = −a + cei


π
n +

2πk
n


(41)

for k = 0, 1, . . . , n − 1. By substituting these eigenvalues into the
lower bound (9), we get

−

n
i=1

1
2Re{λi(A)}

=

n−1
k=0

1

2Re

−a + cei


π
n +

2πk
n


=

n−1
k=0

1
2c

γ − cos


π
n +

2πk
n

 . (42)

First, let us assume that γ < 1 and substitute γ = cos(β/n) in
(42). It follows that

−

n
i=1

1
2Re{λi(A)}

=
1
2c

n−1
k=0

1

cos


β

n


− cos


π
n +

2πk
n


=

1
4c

n−1
k=0

csc


(2k + 1)π
2n

+
β

2n


× csc


(2k + 1)π

2n
−

β

2n


=

n tan β

2

2c sin β

n

,

where the Birkhoff Ergodic theorem is used to conclude the last
equation. Similar steps can be taken when γ > 1. In each case by
substituting γ from (39) in (42), one can obtain the desired result
(37). According to Theorem 2, the equality in (37) is achieved if and
only if A is a normal matrix. On the other hand, based on the cyclic
structure of matrix (36), we conclude that A is normal if and only if
c1 = · · · = cn. �

The secant criterion reported in Arcak and Sontag (2007) and
Tyson and Othmer (1978) for cyclic linear networks provides a
stability condition. This condition implies that the unperturbed
system with ξ = 0 is stable if and only if γ > cos(π/n). For
a fixed parameter β , the stability condition of the cyclic network
is not affected when the number of intermediate subsystems
changes. However, the result of Theorem 7 asserts that the lower
Fig. 3. The lower bound (38), which is depicted by small red circles ( ), is
compared asymptotically to its approximation in (43). It can be observed that (43)
tightly approximates (38). (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

bound of the performance measure (5) increases (i.e., the network
performance deteriorates) when the network size increases. More
explicitly, we have the following approximation for the lower
bound (38)

L(n, β, c) ≈



tan β

2

2cβ
n2 if γ < 1

1
4c

n2 if γ = 1

tanh β

2

2cβ
n2 if γ > 1.

(43)

According to Definition 1, we conclude that when parameter β is
fixed, the H2-norm of the cyclic network deteriorates in the order
of Ω(n) as the network size becomes larger. We should mention
that the H2-norm of n-identical coupled subsystems may scale in
different orders depending on their underlying graph topology, for
more details please see Siami and Motee (2016).

Example 8. In order to support our theoretical results,we consider
a cyclic network (2)–(3) with state matrix (36), c := c1 = · · · = cn,
and C = In. The asymptotic scaling of the H2-norm for this class
of networks is depicted in terms of network size and parameter β

in Fig. 3. In this case, the H2-norm of the cyclic network can be
calculated by the square root of (38). These values are depicted by
small red circles ( ) versus the number of subsystems n. Moreover,
these values are compared asymptotically to their approximation
given by the square root of (43). It can be observed that the
square root of (43) tightly approximates the H2-norm of the cyclic
network.

6. Tightness of our new bounds

In this section, we compare our results with the existing results
in the literature. In Table 1, we summarize several lower bounds on
theH2-norm squared of system (2)–(3) based on all existingworks
in the literature to the best of our knowledge. When Q = In, the
lower bound in Theorem 2 is tighter than all existing lower bounds
reported in reference papers (Komaroff, 1988; Kwon et al., 1985;
Wang et al., 1986). In the following, we provide analytical proofs
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Table 1
Comparison of existing lower bounds on ρss in the literature.

Methods Lower bounds

Theorem 2
n

i=1
−1

2Re{λi(A)}

Theorem 3
n

i=1
−λn−i+1(Q )

2Re{λi(A)}

Mori et al. (1987) −
Tr(Q )

2λmin(As)

Kwon et al. (1985) −
n2λmin(Q )

2Tr(A)

Wang et al. (1986) −
Tr(Q )

2Tr(A)

Komaroff (1988) −

n
i=1 λi(Q )

1
2

2

2Tr(A)

Lee (1997)
n

i=1 λi


Q
a −

AAT

a2

 1
2
for

Q ≻
AAT
a

for our claim. It is true that

− Tr(A) = −

n
i=1

Re{λi(A)}, (44)

and −Re{λi(A)} are positive for all i = 1, . . . , n. From the
arithmetic and harmonic mean inequalities, it follows that

−n2

2Tr(A)
≤

n
i=1

−1
2Re{λi(A)}

. (45)

Moreover, we have that −n
2Tr(A)

≤
−n2

2Tr(A)
. As a result, when Q = In

the following ordering on bounds holds

−n
2Tr(A)  

(Wang et al., 1986)

≤
−n2

2Tr(A)  
(Komaroff, 1988; Kwon et al., 1985)

≤

n
i=1

−1
2Re{λi(A)}  
Theorem 2

.

On the other hand, if A is normal, then the lower bound in
Theorem 3 is tighter than the lower bounds presented in Komaroff
(1988), Kwon et al. (1985) and Wang et al. (1986). In the next few
lines, we will prove this claim. We know that

Tr(Q )

−2Tr(A)
=

n
i=1

λi(Q )

−2Tr(A)
≤


n

i=1
λi(Q )

1
2

2

−2Tr(A)
(46)

and

Tr(Q )

−2Tr(A)
≤


n

i=1
λi(Q )

1
2

2

−2Tr(A)
. (47)

From the Cauchy–Schwarz inequality, we get
n

i=1

λi(Q )
1
2

2

≤

n
i=1

λn−i+1(Q )

−Re{λi(A)}


−

n
i=1

Re{λi(A)}


. (48)

Then, Eq. (44) and inequality (48) give us

−


n

i=1
λi(Q )

1
2

2

2Tr(A)
≤ −

n
i=1

λn−i+1(Q )

2Re{λi(A)}
. (49)

According to (46), (47) and (49), we conclude that our proposed
lower bound is tighter than the lower bounds reported in Komaroff
Fig. 4. A numerical comparison of the results presented in Table 1 for the family of
linear systems given in Example 9.

(1988), Kwon et al. (1985) andWang et al. (1986). In summary, we
have

Tr(Q )

−2Tr(A)  
(Wang et al., 1986)

≤


n

i=1
λi(Q )

1
2

2

−2Tr(A)  
(Komaroff, 1988)

≤

n
i=1

−λn−i+1(Q )

2Re{λi(A)}  
Theorem 3

and

n2λmin(Q )

−2Tr(A)  
(Kwon et al., 1985)

≤


n

i=1
λi(Q )

1
2

2

−2Tr(A)  
(Komaroff, 1988)

≤

n
i=1

−λn−i+1(Q )

2Re{λi(A)}  
Theorem 3

.

To support our results, we illustrate bymeans of two simulation
examples that our lower bounds for the performance measure (5)
are the tightest among the other known bounds given in Table 1.

Example 9. Let us define the parametrized family of matrices Aα

as follows

Aα = (1 − α)A0 + αA1 (50)

for all 0 ≤ α ≤ 1, where A0 and A1 are given by

A0 =

−5 3 3 3
0 −5 2 2
0 0 −6 1
0 0 0 −6

 and

A1 =

−8 3 2 1
1 −8 3 2
2 1 −8 3
3 2 1 −8

 .

We evaluate the performance of the parametrized family of linear
system (2)–(3) with state matrix Aα and output matrix C = I4 for
all 0 ≤ α ≤ 1. In Fig. 4, our lower bound based on Theorem 2 is
compared with other known bounds summarized in Table 1. One
observes from this figure that our lower bound outperforms all
existing lower bounds for all 0 ≤ α ≤ 1. For all 0 ≤ α < 1,
the parametrized matrix Aα is not normal. However, this matrix
becomes normal for α = 1. Therefore, as it is seen in the figure our
lower bounds reach the exact value of the performance measure
for α = 1.
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Fig. 5. A numerical comparison of the results presented in Table 1 for the family of
consensus networks given in Example 10.

Example 10. We illustrate tightness of our bounds on the
performance measure of the parametrized family of linear
consensus networks over directed graph that are defined using the
following parametrized family of Laplacian matrices

Lα = (1 − α)L0 + αL1 (51)

for all 0 ≤ α ≤ 1, where L0 and L1 are given by

L0 =

 2 −1 −1 0
−1 3 −1 −1
−1 −1 4 −2
0 −1 −2 3

 , L1 =

 4 −2 0 −2
−2 2 0 0
0 0 1 −1

−2 0 −1 3


and the following output matrix

C =

 1 −1 0 0
0 1 −1 0
0 0 1 −1

−1 0 0 1

 .

In Fig. 5, our lower bound is compared with other known bounds
presented in Table 1. The simulation results confirm that our
proposed lower bound is tighter than all the previously existing
results in the literature. It should be noted that since Q = CTC is
not full-rank (i.e., singular) the result of Lee (1997) is not applicable
to this family of systems.

7. Discussion and conclusion

The proposed lower and upper bounds in Theorem 2 are
functions of the real parts of eigenvalues of the state matrix of the
system and the eigenvalues of its symmetric part, respectively. We
have shown that the spectral lower bound in Theorem 2 is tighter
than all existing lower bounds reported in Table 1. Our proposed
lower bound requires computation of all eigenvalues of a n × n
state matrix that in general has higher computational complexity
than those lower bounds in Table 1. This extra complexity is the
price of having comparably tighter estimates for the performance
measure. Calculation of eigenvalues (modes) of some classes
of linear dynamical networks with normal or symmetric state
matrices are inexpensive andmay lead to closed-form expressions
for all eigenvalues, e.g., spatially invariant systems with lattice
or ring topologies and linear consensus networks with path, star,
cycle, complete, and complete bipartite graph topologies; see
Bamieh et al. (2012) and Siami and Motee (2016) and references
in there. For networks with generic n × n state matrices, the best
currently known bounds for arithmetic complexity of computing
all eigenvalues and their associated eigenspaces is given byO

n3

+

(n log2 n) log b

for an approximation within 2−b; see Pan and

Chen (1999) for more details. This bound is reported to be
optimal up to a logarithmic factor, where it is shown that a much
better randomized arithmetic complexity of order O


n2 log n +

(n log2 n) log b

can be achieved for some important special classes

ofmatrices such as Toeplitz, Hankel, Toeplitz-like, Hankel-like, and
Toeplitz-like-plus-Hankel-like matrices.

The value of having a spectral lower bound like (8) is beyond its
computational complexity as it provides valuable insight on how
the expected output energy under white noise excitation depends
on the dynamic modes of the system, which is given by the lower
bound −1

2

n
i=1 Re{λi}

−1. We may think of term −1
2 Re{λi}

−1 as a
quantity that can be associated with the energy of the i’th mode of
the system, which is inversely proportional to its distance from the
imaginary axis in the complex domain. The first key point is that for
networks with a few slow modes, we can still obtain rather tight
lower bounds by only identifying those slow modes; for example
see Ljung (1998) for some efficient identification algorithms. The
second key point about the spectral lower bound is that it helps
to unravel the fundamental role of slow modes in performance
deterioration: slower modes are more energetic and dominant
after transient phase in time, i.e., the high energy components
of the output signal are the ones that are temporally slow. This
suggests some useful insights on how to design inter-network
feedback control laws by replacing slow modes of the network
in order to achieve better performance bounds. This is one of our
future research directions.
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