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Performance Analysis and Optimal Design of
Time-Delay Directed Consensus Networks

Shima Dezfulian, Yaser Ghaedsharaf and Nader Motee

Abstract—The H2 performance of a class of noisy time-delay
consensus networks with directed interconnection topologies is
considered. For networks with normal Laplacian, we derive a
closed-form expression for the performance measure and study
its functional properties. The scaling properties of theH2-norm is
investigated for some families of networks. Finally, the problem
of tuning feedback gains of a network with fixed topology in
order to improve its performance is considered. Our proposed
design method can handle networks with several thousands state
variables.

I. INTRODUCTION

All real-world control systems experience time-delay and
noise when closing the loop using sensory data. The presence
of these undesired factors usually make analysis and design
procedures more challenging [1]. Intractability of analysis and
design problems as well as emergence of fundamental limits
and tradeoffs, as side effects of time-delay, become more
evident in the context of networked systems. It is shown
that H2 performance of linear consensus networks deteriorate
by increasing time-delay and is a non-monotone function
of design parameters [2]. Intrinsic tradeoffs emerge between
magnitude of extreme fluctuations, time-delay, statistics of
noise, and network connectivity [3], [4], which reveals that
time-delay is indeed origin of network fragility to certain
systemic events. The goal of this paper is to measure quality of
achieving consensus in presence of time-delay and noise for
networks with directed interconnection topologies, and then
apply our results to design optimal network topologies.

Stability analysis of time-delay linear time-invariant (LTI)
systems is presented in [5], [6]. In [7] and [8], the authors char-
acterize necessary and sufficient conditions for achieving con-
sensus in time-delay consensus network with undirected graph
topologies. Some sufficient conditions for average-consensus
of undirected networks, with possibly constant, time-varying,
uniform and non-uniform time-delay, are investigated in [9].
When there is no time-delay, [10] and [11] provide necessary
and sufficient conditions for achieving consensus in directed
networks.

In [12], delay-Lyapunov equations are used to quantify H2-
norm of general time-delay LTI systems, where an explicit
expression for the H2-norm is obtained for systems with
commensurate delays, i.e., time-delays that are all integer
multiples of a basic delay. The H2-norm of a delay-free
directed consensus network is used as a robustness measure in
[13], where a closed-form expression for H2-norm is obtained
for networks with normal Laplacian matrices. The authors of
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[14] and [15] evaluate H2 performance of delay-free first- and
second-order consensus networks with undirected topologies.
In [16], it is shown that H2-norm of a time-delay undirected
consensus network can be characterized explicitly in terms
of time-delay and Laplacian eigenvalues and approximated
effciently by another spectral function that can be used to
enhance the network performance via growing, sparsification,
and reweighing procedures. Obtaining closed-form expressions
for performance measures in time-delay networks opens up
new possibilities to reduce computational complexity of design
algorithms [2], [4].

In our first contribution in Section V, we derive a closed-
form expression for H2-norm of time-delay consensus net-
works with directed coupling topologies and normal Lapla-
cians. It is shown that the H2 performance measure is an in-
creasing function of the time-delay and it has a non-monotonic
behavior with respect to feedback gains. When there is no
time-delay, it is known that the H2 performance of consensus
networks (with undirected graph) can be improved indefinitely
by increasing the value of feedback gains. This property does
not hold in presence of time-delay. We prove that allowing all-
to-all communication between agents to exchange their state
information with certain feedback gains, that depends on time-
delay, will result in the best achievable H2 performance. Then,
we study scaling properties of the performance measure (as a
function of network size) for some families of networks.

In our second contribution in Section VI, we consider the
problem of improving performance of a time-delay directed
network with fixed topology through adjusting feedback gains.
The design problem can be cast as an optimization problem
that can handle both consensus and average-consensus net-
works. We exploit structural properties of the involving system
matrices in order to reduce computational complexity of the
design problem. To compute the performance measure (i.e., the
cost function) and its gradient, we utilize iterative methods
to solve the corresponding large-scale time-delay Lyapunov
equations [17]. The common approach is to apply Krylov
subspace method along with a pre-conditioner to solve the
resulting time-delay Lyapunov equations [18], where one can
computeH2-norm of a time-delay LTI system with around one
thousand state variables. The pre-conditioner proposed by [18]
is not applicable to our network design problem. Therefore,
we propose a new pre-conditioner that performs well when the
ratio of time-delay to time-delay margin is sufficiently small.
Our proposed method enables us to compute and optimize
performance of time-delay consensus networks with up to
several thousands states variables.

This paper is an evolved version of [19], that presents
several new results, including materials of Section VI and
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simulations, and provides a comprehensive discussion of the
subject.

II. PRELIMINARIES AND DEFINITIONS

R+(R++) is the set of non-negative (positive) real numbers
and C is the set of complex numbers. A complex number c
is denoted by c = <{c} + ={c}, where <{c} and ={c}
denote the real and imaginary parts of c, respectively. Also, 
is the imaginary unit, so 2 = −1. I is a shorthand notation
for the set {1, 2, . . . , n}. Vector ei ∈ Rn is a unit vector
which its ith entry is equal to one and the rest of its entries
are equal to zero. 1n is the vector of all ones. For a matrix
M , transpose, conjugate, conjugate transpose, and Moore-
Penrose pseudoinverse are shown by MT , M̄ , MH, and M†,
respectively. [M ]ij indicates the ijth entry of matrix M . In
is the identity matrix in Rn×n, and 0n×n is the matrix of all
zeros. Centering matrix is defined as Mn = In − 1

n1n1
T
n .

Kronecker product of matrix M and matrix N is denoted by
M⊗N . Vectorization of matrix M is shown by vec(M), which
is a column vector. Trace of matrix M is denoted by Tr(M).
Matrix M ∈ Cn×n is unitary if MMH = MHM = In. Matrix
M ∈ Cn×n is normal if MMH = MHM .
Big O notation is shown by O, e.g., f(x) = O

(
g(x)

)
means

that there exists some positive real number κ and a real
number x0 such that for every x greater than or equal to x0,
|f(x)| < κ|g(x)|. A weighed directed graph G is defined by
a tuple (V,E, w). V is the set of nodes, E ⊆ V ×V is the
set of edges and w : V×V→ R+ is a weight function such
that

w
(
(i, j)

)
=

{
wij if (i, j) ∈ E

0 otherwise
,

where wij is the weight of edge (i, j) ∈ E. Let kij to be
the shorthand notation for w

(
(i, j)

)
for all (i, j) ∈ V × V.

For any edge (i, j) ∈ E, node j is its head and node i is
its tail. We assume that nodes do not have self-loops and
there are no parallel edges from one node to another node.
A directed path in graph G is a sequence of distinct nodes of
the graph which are connected to each other by a sequence
of edges [20]. A graph G has a globally reachable node if
there exists a node such that there is a directed path from
any other node of the graph G to that node [21]. A node j is
in the neighborhood of node i, if (i, j) ∈ E; therefore, set of
neighbors of node i is defined as Ni = {j ∈ V|(i, j) ∈ E}. In-
degree of the node i is dini =

∑n
j=1 kji, likewise, out-degree

of node i is douti =
∑n
j=1 kij . A graph is balanced if and only

if all of its nodes have the same in-degree and out-degree.
Consider a vector d = [dout1 , dout2 , ..., doutn ]T, diag(d) is a
square diagonal matrix such that d’s entries are on its main
diagonal. Adjacency matrix, A ∈ Rn×n, of the graph G is
defined by

[A]ij = kij for all (i, j) ∈ V ×V. (1)

Laplacian matrix of graph G is defined as L = D−A, where
D = diag(d). Normalized Laplacian matrix of a directed
graph is LN = DD†−D†A. Eigenvalues of Laplacian matrix
of any directed graph have non-negative real parts [20]. The

row sum of Laplacian matrix is equal to zero. Consequently,
L1n = 0 and L has at least one zero eigenvalue. Eigenvalues
of Laplacian matrix are shown by λi’s for all i ∈ I and we set
λ1 = 0. A directed graph has a globally reachable node if and
only if it has one zero eigenvalue and the rest of its eigenvalues
have positive real parts [22]. For a balanced graph, 1T

nL = 0.

III. PROBLEM STATEMENT

Let us consider a team of mobile robots who want to
rendezvous at an appointed location but they do not have
any priori knowledge of the gathering time. Therefore, the
robots should reach an agreement on their rendezvous time by
achieving consensus. We assign a scalar state to each robot i,
whose value at time t is denoted by xi, which is his belief of
the gathering time. Moreover, in order to achieve consensus,
robots can communicate with each other to share their states.
Robots and their directed communication links are represented
by nodes and edges of a directed communication graph G,
respectively. Direction of the edges represent the direction of
communication links, i.e., for an edge (i, j) robot i receives
information from robot j. In order to incorporate deficiencies
of communication network, we assume all robots experience
an identical and constant 1 time-delay, τ ∈ R+. Furthermore,
communication noise is modeled by a white Gaussian noise
[26]. Dynamics of rendezvous state of robot i, for every i ∈ V,
is given

ẋi(t) = ui(t) + ξi(t),

where ui(t), the control input of robot i, is given by

ui(t) =

n∑
j=1

kij

(
xj(t− τ)− xi(t− τ)

)
,

in which kij is the feedback gain that robot i allocates to robot
j and is discussed in equation (1) as an element of adjacency
matrix. Output of node i at time t, yi(t), is defined as deviation
of its state from the average, i.e.,

yi(t) := xi(t)−
1

n

n∑
j=1

xj(t).

States of all nodes at time t are represented by vec-
tor x(t) = [x1(t), x2(t), . . . , xn(t)]T. Vector of noise
ξ(t) = [ξ1(t), ξ2(t), . . . , ξn(t)]T is a Gaussian white noise
process with zero mean and identity covariance, i.e.,
E[ξ(t1), ξ(t2)] = Inδ(t1 − t2), where δ(t) is delta function.
The dynamics of the whole network can be written as

ẋ(t) = −Lx(t− τ) + ξ(t), t ≥ 0,

y(t) = Mnx(t),
(2)

1This assumption has been widely used by other researchers as it allows
analytical derivations of formulas. For rendezvous in time, it is a common
practice in robotics labs to use identical communication modules for all
agents, which results in a uniform communication time-delay. Moreover, in
other related applications such as heading alignments, rendezvous in space,
and velocity control of agents using a Motion Capture (MoCap) system to
observe their spatial locations in indoor labs [23]–[25] all agents experience
an identical time-delay to access data through MoCap system.
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with initial condition

x(t) =

{
0 if t ∈ [−τ, 0)

x0 if t = 0
. (3)

Matrix L is the Laplacian matrix of the underlying communi-
cation graph G and

[L]ij =

{
ki1 + ki2 + · · ·+ kin if i = j,

−kij otherwise,

Moreover, the output matrix, Mn, is the centering matrix. In
our example of rendezvous, we can interpret x0 in (3) as the
preferred rendezvous time of the robots.

Assumption 1. The communication graph G has a globally
reachable node.

By the above assumption, 1n spans the right null space of L.
When there is no noise, under Assumption 1, if time-delay is
less than some certain threshold, then all robots will achieve
consensus. However, in the presence of noise, consensus will
not happen. In order to quantify the quality of consensus,
we employ the H2-norm of the network as the performance
measure, which is defined as

ρ(L, τ) = E
[ ∫ ∞

t=0

Tr
(
y(t)T y(t)

)
dt

]
, (4)

For network (2), equation (4) measures the dispersion of the
states of the robots from the average. In other words, it
measures the total amount of disagreement among the robots.
As the disagreement increases, the H2-norm increases. In
this paper, we seek a closed-form expression for the H2-
norm of the network (2) when the Laplacian matrix of the
communication graph G is normal. Our expression can be
applied to not only undirected communication topologies [16]
but also a class of directed ones. Moreover, we suggest an
efficient method for computing the H2-norm of network (2)
and its gradient in order to optimize the performance by
allocating optimal edge weights to the graph G.

Remark 1. Let ν to span the left null space of Laplacian
matrix. It can be shown that in the absence of noise, the value
of consensus is νx0

νT1n
. It is worth mentioning that in section VI,

we use the notion of average-consensus. Similar to consensus,
in average-consensus all robots want to reach an agreement
on their states. However, the value of average-consensus, as
its name suggest, is 1nx0

n = x1(0)+x2(0)+···+xn(0)
n .

IV. STABILITY AND CONVERGENCE RESULTS

To have a meaningful discussion on the performance of
reaching consensus, the network has to be stable since oth-
erwise, the H2-norm will be unbounded. However, in system
(2), the system matrix, −L, has one zero eigenvalue and as
a result it has a marginally stable mode. In the following, we
show that how we can transform the system in order to remove
the marginally stable mode.

Lemma 1. Transfer matrix of system (2) is the same as
transfer matrix of the following stable modified system

˙̂x(t) = −L̃x̂(t− τ) +
(
In −

1nν
T

νT1n

)
ξ(t), t ≥ 0,

y(t) = Mnx̂(t),

(5)

with initial condition

x̂(t) =

{
0 for t ∈ [−τ, 0)

x0 − νTx0

νT1n
1n for t = 0

, (6)

where vector ν spans left null space of Laplacian matrix L.
Also, L̃ = L + αd

1nν
T

νT1n
and αd is a positive constant that

later on we will decide on its value through a specification.
Moreover, the new state variable is x̂(t) = x(t)− νTx0

νT1n
1n.

Proof. Since ν spans left null space of L, in the ab-
sence of noise, νTẋ(t) = 0. Therefore, νTx(t) is
an invariant quantity and νTx0 = νTx(t). Hence,
equivalently x̂(t) =

(
In − 1nν

T

νT1n

)
x(t). Moreover, because

Mn

(
In − 1nν

T

νT1n

)
= Mn, we get

y = Mnx̂(t) = Mnx(t). (7)

Transfer matrix of (2) and (5) are

GL(s) =Mn(sI + e−sτL)−1,

GL̃(s) =Mn(sI + e−sτ L̃)−1
(
In −

1nν
T

νT1n

)
,

(8)

respectively. The Jordan normal form of matrices L and L̃ are
given by

L =P diag([0, J2, . . . , Jp])P
−1 = PJLP

−1,

L̃ =P diag([αd, J2, . . . , Jp])P
−1 = PJL̃P

−1,
(9)

where diag([0, J2, . . . , Jp]) is a block diagonal matrix such
that 0, J2, . . . , Jp are its main diagonal blocks, moreover;
diag([αd, J2, . . . , Jp]) is similarly defined.
Also, it can be shown that(
In −

1nν
T

νT1n

)
= P diag([0, 1, . . . , 1])P−1=PΛTP

−1, (10)

where ΛT = diag([0, 1, . . . , 1]). By substituting (9) and (10)
into (8) we obtain

GL(s) =MnP (sIn + e−sτJL)−1P−1,

GL̃(s) =MnP (sIn + e−sτJL̃)−1ΛTP
−1.

(11)

Note that
(sIn + e−sτJL)−1 = diag([s−1, Ĵ−1

2 , . . . , Ĵ−1
p ]),

(sIn + e−sτJL̃)−1 = diag([(s+ e−sταd)−1, Ĵ−1
2 , . . . , Ĵ−1

p ]),
(12)

where Ĵ−1
i = (sIn(i) + e−sτJi)

−1 for i ∈ {2, 3, . . . , p} and
n(i) is the dimension of the Jordan block Ji. By substituting
(12) into (11) we get

GL(s) =MnP diag([0, Ĵ−1
2 , . . . , Ĵ−1

p ])P−1,

GL̃(s) =MnP diag([0, Ĵ−1
2 , . . . , Ĵ−1

p ])P−1.
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Proposition 1. The input matrix of the modified system (5) is
real-valued .

Proof. We prove this proposition by contradiction. Suppose
that ν is not a real vector. Then we can rewrite it as ν =
ν1 + ν2, where ν1 and ν2 are real and independent vectors.
Besides, we have

νTL = νT
1 L+ νT

2 L = 0. (13)

Therefore, both real and imaginary parts of (13) should be
equal to zero. Consequently, the left null space of −L is equal
to the span of ν1 and ν2. It is a contradiction since we have
assumed that rank of L is n−1. As a result, ν is a real vector
and input matrix is a real matrix as well.

In the absence of noise, network (5) is asymptotically stable
if and only if all eigenvalues of L̃ have positive real parts, i.e.,
for all i ∈ I, <{λi} > 0, and τ is less than time-delay margin
τ∗, i.e., τ ∈ [0, τ∗) [27], where the time-delay margin is

τ∗ = min
i

(
1

|λi|
arcsin

(<{λi}
|λi|

))
. (14)

Since all eigenvalues of L̃ are the same as those of L except
the first one, we replace the zero eigenvalue of L with αd.
To preserve the properties of the original network we should
have

τ∗ ≤

(
1

|αd|
arcsin

(<(αd)

|αd|

))
,

or equivalently

0 < αd ≤
π

2τ∗
.

Remark 2. In the absence of noise , if τ < τ∗ then network
(2) achieve consensus asymptotically although it is marginally
stable.

V. H2-NORM EVALUATION

We start by definingH2-norm of time-delay network (5) and
then we restrict our attention to the case where L̃ is a normal
matrix and derive a closed-form expression for the H2-norm.

A. H2-Norm of LTI Time-Delay Network

The definition of the H2-norm for the time-delay network is
the same as delay-free network. Let GL̃ be the transfer matrix
of the system (5), which is equal to the transfer matrix of
original system (2), GL, then by Parceval’s theorem, we can
rewrite (4) in frequency domain as

1

2π

∫ ∞
−∞

Tr
(
GL(ω)HGL(ω)

)
dω. (15)

To find an expression for the H2-norm, in the presence of
time-delay, we need to introduce fundamental solution, delay-
Lyapunov matrix, and delay-Lyapunov equations.

Definition 1 ([28]). The fundamental solution of the
system (5), K(t), is the inverse Laplace transform of

(
sIn + L̃e−sτ

)−1
, i.e, L[K] =

(
sIn + L̃e−sτ

)−1
, and satis-

fies the equation

d

dt
K(t) = −L̃K(t− τ), (16)

for t ≥ 0, and the initial conditions

K(0) = In and K(t) = 0 for t < 0. (17)

It can be shown that the fundamental solution satisfies the
following relation, with the same initial condition as (17)

d

dt
K(t) = −K(t− τ)L̃, (18)

for t ≥ 0. Furthermore, since system (5) is exponentially
stable, it can be shown that K(t)→ 0 exponentially.

Definition 2 ([28]). The time-delay Lyapunov matrix of the
system (5) is defined as

U(t) :=

∫ ∞
s=0

KT (s)MT
nMnK(s+ t)ds. (19)

Since K(t) = 0 for t < 0 and K(t) → 0 exponentially as
t→ +∞, U(t) is well defined.
Furthermore, analogous to the delay-free case we exploit
Lyapunov equation to compute H2-norm [28]. Time-delay
Lyapunov equations are

U(−t) = UT (t), for t ∈ [−τ, τ ]

UT (τ)L̃+ L̃TU(τ) = Mn,

U̇(t) = −U(t− τ)L̃ for t ∈ [0, τ ].

Theorem 1 ([12]). The H2-norm squared of asymptotically
stable network (5) is

Tr

((
In −

1nν
T

νT1n

)T

U(0)

(
In −

1nν
T

νT1n

))
. (20)

Therefore, we need an explicit expression for U(0) to compute
H2-norm. Let us define matrix B as

B := M + NeAτ . (21)

where

A :=

[
0 −L̃T ⊗ In

In ⊗ L̃T 0

]
,

M:=

[
0 −L̃T ⊗ In
In2 0

]
,N:=

[
−In ⊗ L̃T 0

0 −In2

]
.

(22)

It can be shown that for invertible B, matrix U(0) can be
found by [29]

vecU(0) =
[
In2 0n2

]
B−1

[
− vecMn

0n2×1

]
. (23)

Therefore, by substituting U(0) from (23) into equation (20),
we can calculate the value of the H2-norm squared [29], [30].
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B. H2-norm of Time-delay Network with Normal Laplacian

Normal modified Laplacian matrix L̃ can be written as
L̃ = QΛL̃Q

H, where Q is a unitary matrix and ΛL̃ is the
diagonal matrix of eigenvalues. In this section, we provide
a closed-form expression for the H2-norm of (2), whenever
its modified Laplacian matrix is a normal matrix. It can be
shown that if the graph Laplacian matrix, L, is Normal, then
the modified Laplacian matrix, L̃, is also normal. Lemma 4
of [13] states that a graph G with globally reachable node and
normal Laplacian matrix is balanced.

Theorem 2. For system (2) with corresponding normal Lapla-
cian matrix, the H2-norm squared is represented in terms of
time-delay and Laplacian matrix eigenvalues as

1

2

n∑
i=2

cos
(
τ |λi|

)
<{λi} − |λi| sin

(
τ |λi|

) . (24)

Proof. First, we construct A for our system. Since L̃ is a
normal matrix and L̃ = QΛL̃Q

H, we have

L̃H ⊗ In = (Q⊗ Q̄)(Λ̄L̃ ⊗ In)(QH ⊗QT ),

In ⊗ L̃T = (Q⊗ Q̄)(In ⊗ ΛL̃)(QH ⊗QT ).
(25)

Set matrix Q and matrix Ω to be as follows

Q =

[
Q⊗ Q̄ 0n2×n2

0n2×n2 Q⊗ Q̄

]
,Ω =

[
0n2×n2 −Λ̄L̃ ⊗ In
In ⊗ ΛL̃ 0n2×n2

]
.

Therefore, we can rewrite matrix A as

A = QΩQH. (26)

Because matrix Q is a unitary matrix, it can be shown that Q
is unitary as well. Also, we have

In2 = (Q⊗ Q̄)In2(QH ⊗QT ).

It follows that

M = QΛMQH, N = QΛNQH, (27)

where ΛM and ΛN are

ΛM=

[
0n2×n2 −ΛH

L̃
⊗ In

In2 0n2×n2

]
,ΛN=

[
−I ⊗ ΛL̃ 0
0n2×n2 −In2

]
.

To construct B, we need to compute eAτ first, since Q is
invertible and unitary, i.e., QHQ = I2n2 , we get

eAτ = QeΩτQH. (28)

By substituting (27) and (28) into (21) we have

(M + NeAτ )−1 = Q
(

ΛM + ΛNe
Ωτ
)−1

QH.

As a result, we get the following equivalent expression for
equation (23)

vecU(0) =
[
In2 0n2

]
Q(ΛM + ΛNe

Ωτ )−1QH
[
− vecMn

0

]
. (29)

Let us compute eΩτ explicitly. For the scalar function f and
a general matrix M ∈ Cn×n, f(M) has the same dimension
as matrix M . Consider a diagonalizable matrix M such that

M = PΣP−1 = P diag([σ1, σ2, . . . , σn])P−1,

then f(M) is as follows

f(M)=Pf(Σ)P−1=P diag([f(σ1), . . . , f(σn)])P−1. (30)

See [31] for more details about functions of matrices. We infer
that M and f(M) have the same eigenvectors. Moreover, we
have

eΩτ = I2n2 + Ωτ +
Ω2τ2

2!
+

Ω3τ3

3!
+ . . . . (31)

It can be shown by induction that the even and odd powers of
matrix Ω for k ∈ N are given by

Ω2k = (−1)k
[
Λ̄k
L̃
⊗ Λk

L̃
0n2×n2

0n2×n2 Λ̄k
L̃
⊗ Λk

L̃

]
,

Ω2k−1 = (−1)k

[
0n2×n2 Λ̄k

L̃
⊗ Λk−1

L̃

−Λ̄k−1

L̃
⊗ Λk

L̃
0n2×n2

]
.

(32)

By (30), (31) and (32) we obtain

(eΩτ )11 = cos
(
(Λ̄L̃ ⊗ ΛL̃)

1
2 τ
)
,

(eΩτ )12 = −Λ̄
1
2

L̃
sin
(
(Λ̄L̃ ⊗ ΛL̃)

1
2 τ
)
Λ
− 1

2

L̃
,

(eΩτ )21 = Λ̄
− 1

2

L̃
sin
(
(Λ̄L̃ ⊗ ΛL̃)

1
2 τ
)
ΛL̃

1
2 ,

(eΩτ )22 = cos
(
(Λ̄L̃ ⊗ ΛL̃)

1
2 τ
)
.

It follows that

ΛM + ΛNe
Ωτ =

[
(ΛM + ΛNe

Ωτ )11 (ΛM + ΛNe
Ωτ )12

(ΛM + ΛNe
Ωτ )21 (ΛM + ΛNe

Ωτ )22

]
.

Where (ΛM + ΛNe
Ωτ )ij for i, j ∈ {1, 2} are given by

(ΛM + ΛNe
Ωτ )11 = −(In ⊗ ΛL̃)(eΩτ )11

(ΛM + ΛNe
Ωτ )12 =−(ΛH

L̃
⊗ In)−(In ⊗ ΛL̃)(eΩτ)12

(ΛM + ΛNe
Ωτ )21 = In2 − (eΩτ )21

(ΛM + ΛNe
Ωτ )22 = −(eΩτ )22

(33)

Since matrix
(
In − 1nν

T

νT1n

)
is a real matrix, we get(

In −
1nν

T

νT1n

)T

=

(
In −

1nν
T

νT1n

)H
. (34)

Recall that by equation (10), we can rewrite
(
In − 1nν

T

νT1n

)
as

QΛTQ
H . By substituting (34) in (20) we obtain

Tr

((
In −

1nν
T

νT1n

)H
U(0)

(
In −

1nν
T

νT1n

))
= Tr

(
QΛTQ

HU(0)QΛTQ
H
)

= Tr
(
QΛTQ

HU(0)
)
.

(35)

Moreover, for two arbitrary matrices M ∈ Cn×n and M̂ ∈
Cn×n we have

Tr(MHM̂) = vec(M)H vec(M̂).

Hence, we obtain the following equivalent expression for (35)

vec(QΛTQ
H)T vec(U(0)). (36)
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By premultiplying equation (29) by vec(QΛTQ
H)T we obtain[

vec(QΛTQ
H)T 0

]
Q(ΛM + ΛNe

Ωτ )−1QH
[
− vecMn

0

]
=
[
vec(QΛTQ

H)T (Q⊗ Q̄) 0
]

(ΛM + ΛNe
Ωτ )−1[

−(QH ⊗QT) vecMn
T

0

]
= − vec(ΛT )T(QH ⊗QT)(Q⊗ Q̄)(

(ΛM + ΛNe
Ωτ )−1

)
11

(QH ⊗QT) vec(Q̄ΛMn
QT)

= − vec(ΛT )T
(
(ΛM + ΛNe

Ωτ )−1
)

11
vec(ΛMn

).

For matrix P =

[
P11 P12

P21 P22

]
which consists of 4 blocks, if

P22 is non-singular, and the Schur complement of block P22,
i.e., P11−P12P

−1
22 P21, is invertible, then the first entry of the

inverse of the block matrix is given by [32]

(P−1)11 = (P11 − P12P
−1
22 P21)−1. (37)

Hence, by substituting from (33) into (37) we get(
(ΛM + ΛNe

Ωτ )−1)
11

= −
(

(In ⊗ ΛL̃) cos
(
(Λ̄L̃ ⊗ ΛL̃)

1
2 τ

)
+
[
(Λ̄L̃ ⊗ In)− (In ⊗ ΛL̃)Λ̄

1
2

L̃
sin

(
(Λ̄L̃ ⊗ ΛL̃)

1
2 τ

)
ΛL̃

− 1
2
]

(
cos

(
(Λ̄L̃ ⊗ ΛL̃)

1
2 τ

))−1[
In2 − Λ̄

− 1
2

L̃
sin

(
(Λ̄L̃ ⊗ ΛL̃)

1
2 τ

)
ΛL̃

1
2
])−1

.

Since ΛL̃ and Λ̄L̃ are diagonal matrices, their kronecker
product, i.e., (Λ̄L̃ ⊗ ΛL̃) is a diagonal matrix as well, hence
sin((Λ̄L̃⊗ΛL̃)

1
2 τ) and cos((Λ̄L̃⊗ΛL̃)

1
2 τ) is a diagonal matrix

which its diagonal elements are sine and cosine of the real
numbers, thus we do the computation for all the diagonal
elements of the matrix

(
(ΛM + ΛNe

Ωτ )−1
)

11
and then after

multiplying it by vec(ΛMn
) from right and by (− vec(ΛT )T )

from left we get the equation (24).

For delay-free case, equation (24) is simplified to

1

2

n∑
i=2

1

<{λi}
,

whichi is reported in [13]. Moreover, for undirected graphs,
Laplacian matrix is symmetric and <{λi} = λi = |λi|. There-
fore, by substituting in (24) we obtain

1

2

n∑
i=2

cos(τλi)

λi
(
1− sin(τλi)

) ,
which is the expression that is given in [16], [33] for time-
delay undirected networks. In the rest of this section, we study
the behavior of (24) as a function of time-delay.

Theorem 3. For network (2) with a normal Laplacian matrix,
the H2-norm squared is an increasing function of time-delay
for all τ < τ∗.

Proof. By taking derivative of (24) with respect to time-delay
(τ ) we get the following

1

2

n∑
i=2

|λi|2 − sin(τ |λi|)|λi| <(λk)(
<(λi)− |λi| sin(τ(|λi|))

)2 . (38)

Our system is exponentially stable, therefore the denominator
of equation (38) is positive and for every i ∈ {2, ...n} we have

|λi| sin(τ |λi|) < <(λi). (39)

Multiplying both sides of the (39) by (−<(λi)) we get

−|λi| <(λi) sin(τ |λi|) > −(<(λi))
2. (40)

Add |λi|2 to the both sides of the equation (40)

|λi|2 − sin(τ |λi|)|λi| <(λi) > |λi|2 − (<(λi))
2,

since |λi|2 − (<(λi))
2 ≥ 0 we obtain

|λi|2 − sin(τ |λi|)|λi| <(λi) > 0.

Hence, the numerator of (38) is also positive and thus, Theo-
rem 3 follows.

Theorem 4. If the corresponding Laplacian matrix of network
(2) is normal, then among all communication graphs on n
nodes with normal Laplacian, complete graph reaches the
minimum achievable value of the spectral function (24), which
is equal to

ρ∗n ≈ 1.5319(n− 1)τ. (41)

Remark 3. According to our numerical results, we suggest
a conjecture which is as follows: The H2-norm squared of
asymptotically stable time-delay network (2) is lower-bounded
by that of an asymptotically stable time-delay network with
normal Laplacian matrix and the same eigenvalues, i.e.,
1
2

∑n
i=2

cos
(
τ |λi|

)
<{λi}−|λi| sin

(
τ |λi|

) .

Figure 1 illustrates an empirical study. Horizontal axis indi-
cates number of nodes and the vertical axis represents the
square of the ratio of the H2-norm of the two networks. For
a fixed number of nodes, we collect and depict results of 100
different sample networks. Moreover, in each sample, time-
delay is a random number between zero and the corresponding
time-delay margin. One can observe that 1 is a hard limit for
all these relative performance measures. It is worth mention-
ing, this result is valid for the delay-free average-consenus
networks and is reported in [34].

C. Scaling Properties of H2-norm for Families of Graphs
In this section, we discuss the H2-norm of star graphs, com-
plete graphs, cycle graphs, and path graphs. This discussion is
an extension of the case studies reported in [13] for delay-free
case. As we mentioned earlier, if the graph Laplacian matrix,
L, is Normal, then the modified Laplacian matrix, L̃, is also
normal.
Directed star graph Sn: Imploding star graph on n nodes and
n − 1 edges has a central node such that any other node is
connected to it by an edge. All edges of the graph points
towards the central node. We set edge weights to 1. Then,
Laplacian matrix of star graph is

LSn =


0 0 . . . 0 0
−1 1 . . . 0 0

...
...

. . . 0 0
−1 0 . . . 1 0
−1 0 . . . 0 1

 .
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Fig. 1. Lower bound on the H2-norm of consensus networks

Eigenvalue of LSn are {0, 1, . . . , 1}. As a result, from (14)
we obtain the corresponding time-delay margin τ∗ = π

2 . It
can be shown that LSn is not a normal matrix. But if we
choose αd = 1, then the modified Laplacian L̃Sn is normal.
From (24) we obtain the H2-norm squared

ρ(LSn , τ) =
(n− 1)

2
tan

(π
4

+
τ

2

)
.

Undirected star graph S̃n: Undirected star graph on n nodes
and n−1 edges consists of a central node that connects to all
other nodes by undirected edges. We set edge weights to 1

2 .
Then, Laplacian matrix of this graph is

LS̃n =


n−1

2 − 1
2 . . . − 1

2 − 1
2

− 1
2

1
2 . . . 0 0

...
...

. . . 0 0
− 1

2 0 . . . 1
2 0

− 1
2 0 . . . 0 1

2

 .

Eigenvalues of LS̃n are {0, 1
2 , . . . ,

1
2 ,

n
2 }. As a result, from

(14), we obtain the correcponding time-delay margin τ∗(n) =
π
n , which is a decreasing function of number of nodes. Since
LS̃n is symmetric, the H2-norm squared is

ρ(LS̃n , τ) = (n− 2) tan
(τ + π

4

)
+

1

n
tan

(τn+ π

4

)
.

Complete graphs Kn: Complete graph is an undirected graph
on n nodes that has n(n−1)

2 edges, such that there is an
undirected edge between any pair of its nodes. We set edge
weights to 1. Laplacian matrix of this graph is equal to
nIn − 1n1

T
n . However, we compute the H2-norm squared

of the normalized Laplacian matrix to make our comparison
reasonable. Normalized Laplacian matrix is

LKn =
n

n− 1
In −

1

n− 1
1n1

T
n .

Eigenvalues of LKn are {0, n
n−1 , . . . ,

n
n−1}. As a result, from

(14), we obtain the corresponding the time-delay margin
τ∗(n) = π

2
n−1
n , which is a decreasing function of number of

nodes. Since LKn is symmetric and normal, H2-norm squared
is

ρ(LKn , τ) =
(n− 1)2

2n
tan

(π
4

+
τ

2

n

n− 1

)
.

Directed cycle graphs Cn: Directed cycle graph on n nodes
consists of one cycle with n edges that are oriented in the
same direction. We set edge weights to 1. Laplacian matrix of
this graph is

LCn = In −


eT

2
...
eT
n

eT
1

 =


1 −1 0 . . . 0
0 1 −1 . . . 0
...

...
. . . . . .

...
0 0 . . . 1 −1
−1 0 . . . 0 1

 .
Eigenvalues of LCn are

λi+1 = 1 + eπ(1− 2i
n ) for i ∈ {0, 1, . . . , n− 1}.

Therefore, we have
<(λCn,i) = 2 sin2

(πi
n

)
, |λCn,i| = 2 sin

(πi
n

)
. (42)

As a result, from (14), we obtain the corresponding time-delay
margin τ∗(n) = π

2n sin(πn ) , which is a decreasing function of
n. Hence, lim

n→∞
τ∗(n) = 1

2 . It can be shown that LCn is a
normal matrix. Therefore, by (24) we get

ρ(LCn , τ) =
1

4

n−1∑
i=1

cos(2τ sin(πin ))

sin(πin )
(

sin(πin )− sin
(
2τ sin(πin )

)) .
In order to find an approximation of the H2-norm squared for
0 < x < π, we define function f(x) as

f(x) :=
cos(2τ sin(x))

sin(x)
(

sin(x)− sin
(
2τ sin(x)

)) .
Now set

f1(x) = lim
x→0+

f(x) =
1

1− 2τ

1

x2
,

f2(x) = lim
x→π−

f(x) =
1

1− 2τ

1

(x− π)2
.

(43)

f1

(π
2

)
+ f2

(π
2

)
=

1

1− 2τ

8

π2
,

f
(π

2

)
= tan

(π
4

+ τ
)
.

(44)

From (43) and (44), we obtain

fapprox.(x) =
1

1− 2τ

( 1

x2
+

1

(x− π)2
−

8

π2

)
+ tan

(π
4

+ τ
)
, (45)

where fapprox.(x) is the approximation of function f(x). Set
x = πi

n in equation (45). We get the following approximation
for the H2-norm squared of the cycle graph

n2

2π2(1− 2τ)

n−1∑
i=1

1

i2
+
n− 1

4

(
tan

(π
4

+ τ
)
−

8

π2(1− 2τ)

)
, (46)

where
∑n−1
i=1

1
i2 is a generalized harmonic number. It

is upper bounded by Riemann zeta function of 2, i.e.,
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Fig. 2. H2-norm squared, its approximation and its upper-bound in directed
cycle graphs with 0.1 time-delay

∑n−1
i=1

1
i2 < ζ(2) = π2

6 . Consequently, an upper bound for
equation (46) is

π2n2

12π2(1− 2τ)
+
n− 1

4

(
tan(

π

4
+ τ)− 8

π2(1− 2τ)

)
.

Figure 2, illustrates H2-norm squared of the directed cycle
graph, its approximation and the upper-bound on the approx-
imation.
Undirected cycle graphs C̃n: Undirected cycle graph on n
nodes consists of one cycle with n edges. We set edge weights
to 1

2 . Laplacian matrix of this graph is

LC̃n =
LCn + LT

Cn
2

, (47)

which is the symmetric part of LCn . Eigenvalues of LC̃n are

λi+1 = 1− cos
(2πi

n

)
for i ∈ {0, 1, . . . , n− 1}.

As a result, from (14), we obtain the corresponding time-delay
margin

τ∗ =

{
π
4 , for even n,
π
2

1
1+cos(πn ) , for odd n.

The H2-norm squared is

ρ(LC̃n , τ) =
1

4

n−1∑
i=1

tan(π4 + τ sin2(πin ))

sin2(πin )
.

Directed path graph Pn: If we omit one edge from a directed
cycle graph on n nodes, we get a directed path graph on n
nodes that has n−1 edges. We set edge weights to 1. Laplacian
matrix of this graph is

LPn =


1 −1 0 . . . 0
0 1 −1 . . . 0
...

...
. . . . . .

...
0 0 . . . 1 −1
0 0 . . . 0 0

 .
Eigenvalues of LPn are {0, 1, . . . , 1}. As a result, from (14),
we obtain the corresponding time-delay margin τ∗ = π

2 . It can
be shown that LPn is not normal, therefore, we cannot apply
formula (24) to compute H2-norm squared.

0 2 4 6 8 10 12 14 16 18 20
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40
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60
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80

Fig. 3. Comparison between H2-norm squared of families of graphs with
τ = π

21

Undirected path graph P̃n: If we omit directions from a
directed path graph, Pn, we get an undirected path graph,
P̃n, with n nodes and n− 1 edges. We set edge weights to 1

2 .
Laplacian matrix of this graph is

LP̃n =


1
2 − 1

2 0 . . . 0
− 1

2 1 − 1
2 . . . 0

...
. . . . . . . . .

...
0 . . . − 1

2 1 − 1
2

0 . . . 0 − 1
2

1
2

 .
Eigenvalues of LP̃n are

λi+1 = 2 sin2
( πi

2n

)
, for i ∈ {0, 1, . . . , n− 1}.

As a result, from (14), we obtain the corresponding time-delay
margin, τ∗(n) = π

4 cos2( π2n ) , which is a function of number of
nodes. Since LP̃n is symmetric, the H2-norm squared is

ρ(LP̃ , τ) =
1

4

n−1∑
i=1

tan(π4 + τ sin2( πi2n ))

sin2( πi2n )
.

In Figure 3, we illustrate the performance of the aforemen-
tioned graphs on 20 nodes with τ = π

21 . In delay-free case,
the H2-norm squared of directed and undirected cycle graphs
are the same. Furthermore, numerical results show that the
H2-norm squared of directed and undirected path graphs are
the same too [13]. However, in presence of time-delay this
result is not valid anymore and undirected cycle and path
graphs have a superior performance with respect to directed
counerparts as we can see in Figure 3. Moreover, directed star
graph out-performs undirected star graph like delay-free case.
Complete graph has the best performance and directed star
graph approaches to it similar to delay-free case [13].

VI. DESIGNING TIME-DELAY DIRECTED NETWORKS
WITH FIXED TOPOLOGIES

Let us consider the problem of enhancing the perfor-
mance of a time-delay directed network in achieving average-
consensus. Suppose that the graph topology and time-delay
τ are fixed. Therefore, we can adjust the edge weights in
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order to improve the performance. We can cast this problem
as a constrained optimization problem. The objective function
is minimizing ρ(L, τ). Edge weights (i.e., feedback gains)
are the design parameters and they should be designed such
that: (i) they are non-negative, (ii) the resultaning time-delay
network remains stable, and (iii) network’s graph is balanced
in order to reach average-consensus, i.e., each agent tracks the
average of states of all nodes .
The class of Laplacian matrices that satisfies (iii) includes
symmetric and normal matrices as its proper subset. Although
we impose constraint (iii), we can remove it and relax the
optimization problem when we simply require consensus.
Let us recall equation (23) which is

vecU(0) =
[
In2 0n2

]
B−1

[
− vecMn

0n2×1

]
(48)

=
[
In2 0n2

]
(M + NeAτ )−1

[
− vecMn

0n2×1

]
. (49)

Therefore, from (20) we obtain

ρ(L, τ) = Tr
((
In −

1nν
T

νT1n

)(
In −

1nν
T

νT1n

)T
U(0)

)
=
(

vec
(
(In −

1nν
T

νT1n

)T
(In −

1nν
T

νT1n
)
))T

vecU(0).

Let matrix B to be equal to the input matrix, i.e., B = (In −
1nν

T

νT1n
). By substituting (48) in the equation above we get

ρ(L, τ) =

[
vec(BBT)

0n2×1

]T

(M + NeAτ )−1

[
− vecMn

0n2×1

]
. (50)

Hence, the optimization problem is as follows and the
first three constraints are taking care of the three design
requirements (i), (ii), and (iii).

minimize
wij∀(i,j)∈E

ρ(L, τ)

subject to: ∀i ∈ I : τ − 1

|λi|
arcsin

(
<{λi}
|λi|

)
≤ 0

∀(i, j) ∈ E : wij ≥ 0

1T
nL = 0

L =
∑

(i,j)∈E

wijei(ei − ej)
T.

(51)

The last constraint highlights role of L as a function of
decision variable in the cost function. We can get rid of the
nonlinear inequality constraints (i.e., the first constraint) by
setting objective function to be equal to infinity whenever non-
linear inequality is violated. We use Interior Point OPTimizer
(IPOPT) solver to solve our optimization problem [35]. As we
use quasi-Newton based methods for low-cost computing (up-
dating) Hessian in each iteration of the optimization process,
one can verify that objective function and gradient evaluations
are the most expensive (time consuming) steps. Herein, we
outline our method for computing objective function and its
gradient efficiently to reduce time-complexity.

A. Objective Function Computation

In order to accelerate computation of objective function as
in equation (50), we employ the structure of matrices in our
formulation. We start with computing matrix exponential eAτ .
This matrix exponential is computed via scaling and squaring
method, along with Padé approximation, which is the most
widely used method for computing matrix exponential [36].
We briefly introduce the Padé approximants and scaling and
squaring method [37]. For a square matrix M , let us define
Np,q(M) and Dp,q(M) as

Np,q(M) =

p∑
j=0

(p+ q − j)!p!
(p+ q)!j!(p− j)!

M j ,

Dp,q(M) =

q∑
j=0

(p+ q − j)!q!
(p+ q)!j!(q − j)!

(−M)j .

Then, the [p/q] Padé approximants of matrix M is defined by

Rp,q(M) := Dp,q(M)−1 Np,q(M).

The accuracy of Padé approximants depend on the subordinate
norm of matrix M . If the subordinate norm of matrix M
is in order of 1, then Rp,q(M) approximates eM with small
error, i.e., Rp,q(M) ≈ eM [36]. Scaling and squaring method
suggests dividing matrix M by integral powers of 2 such
that subordinate norm of M

2s is in order of 1. Our numerical
results shows that for Aτ , s is equal to zero. In other words,
we can skip scaling and squaring step in computing eAτ ,
i.e., Rp,q(e

Aτ ) ≈ eAτ . Let D and N denote the shorthand
notations for Dp,q(Aτ) and Np,q(Aτ), respectively. Hence,
the objective function (50) can be written as

ρ(L, τ) =

[
vec(BBT)

0n2×1

]T

D(MD+NN)−1

[
− vecMn

0n2×1

]
.

Now, if

zT
1 =

[
vec(BBT)T 01×n2

]
D,

z2 =(MD+NN)−1

[
− vecMn

0n2×1

]
,

(52)

then ρ(L, τ) = zT
1 z2.

Let us remark that Ri,i, where i = max(p, q), has higher
accuracy than Rp,q at the same cost. Therefore, we exploit Ri,i
as Padé approximants [36]. In our implementation, we exploit
[13/13] Padé approximants, i.e., p = q = 13.
In order to compute Rp,q(e

Aτ ), we should construct matrix D

and N. Define V1 and V2 as

V1 :=Aτ [A6τ6(β13A
6τ6 + β11A

4τ4 + β9A
2τ2)

+β7A
6τ6 + β5A

4τ4 + β3A
2τ2 + β1I2n2 ],

V2 :=A6τ6(β12A
6τ6 + β10A

4τ4 + β8A
2τ2)

+β6A
6τ6 + β4A

4τ4 + β2A
2τ2 + β0I2n2 ,

where βi’s are the coefficients of [13/13] Padé approximants
that are as follows
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β13 = 64764752532480000 β12 = 32382376266240000
β11 = 7771770303897600 β10 = 1187353796428800
β9 = 129060195264000 β8 = 10559470521600
β7 = 670442572800 β6 = 33522128640
β5 = 1323241920 β4 = 40840800
β3 = 960960 β2 = 16380
β1 = 182 β0 = 1.

Hence, we obtain the following equivalent expressions for N

and D N = V1 + V2, D = V2 − V1,

Define an arbitrary augmented vector u ∈ R2n2

as

u =

[
u1

u2

]
, (53)

where u1 and u2 are in Rn2

and U1 and U2 are the cor-
responding matrices in Rn×n such that vec(U1) = u1 and
vec(U2) = u2. By (22) for n ≥ 1 we obtain

Mu =

[
− vec(U2L̃)

u1

]
, Nu = −

[
vec(L̃TU1)

u2

]
,

A2nu =(−1)n
[
vec
(
(L̃n)TU1L̃

n
)

vec
(
(L̃n)TU2L̃

n
)] ,

A2n−1u =(−1)n
[

vec
(
(L̃n−1)TU2L̃

n
)

− vec
(
(L̃n)TU1L̃

n−1
)] ,

(54)

under the convention that L̃0 = In. Therefore, time complexity
of computing N u and Du is O(n3).
Now we have all the tools that we need in order to com-
pute ρ(L, τ) = zT

1 z2. We start by computing z2. Recall that

z2 = (MD+NN)−1

[
− vecMn

0n2×1

]
. To avoid computing ma-

trix inverse for finding z2 with time complexity O(n6), one
can think of finding z2 as solving

(MD+NN)z2 =

[
− vecMn

0n2×1

]
for z2. This equation can be solved by GMRES algorithm
efficiently [38]. GMRES algorithm is an iterative method that
contains only matrix-vector multiplications and as a result,
it is a fast method. According to equations (54), time com-
plexity of finding product of MD+NN and a vector u is
O(n3). However, if matrix MD+NN has a large condition
number, iterative methods (like GMRES) cannot converge fast.
Robustness and convergence rate of iterative methods can be
increased by a suitable preconditioner [39]. A preconditioner
P should be chosen such that P−1u can be done very fast,
where u is a vector. Since for τ = 0, MD+NN equals
β0(M+N), one can employ M+N as a left preconditioner.
When time-delay is zero, M + N is a perfect preconditioner
since the condition number of (M + N)−1(MD+NN) is
one. Let T =

(
In ⊗ (−L̃)T

)
+
(
− L̃T ⊗ In

)
, then inverse of

M + N is

P−1 =

[
T−1 T−1(−L̃T ⊗ In)

T−1 −In2 + T−1(−L̃T ⊗ In)

]
.

Consider vector u as (53), then we have

P−1u =

[
T−1u1 − T−1 vec(U2L̃)

T−1u1 − T−1 vec(U2L̃)− u2

]
.

Fig. 4. Execution time (sec) for computing the performance for different
network sizes. We generated a graph with random topology and weights. For
each network size, the graphs are common and only time-delay is varying.

TABLE I
NUMBER OF REQUIRED GMRES ITERATIONS TO FIND THE

PERFORMANCE.

n

τ
τ∗ 0.1 0.3 0.5 0.7 0.9

10 9 14 20 28 44
50 9 13 19 29 62
100 8 12 16 24 50
200 8 11 15 22 46
500 7 10 14 19 45
1000 7 9 12 17 37

Therefore, efficient matrix-vector multiplication for P−1 de-
pends on the efficiency of matrix-vector multiplication for
matrix T−1. Matrix-vector multiplication for matrix T−1 can
be done efficiently in O(n3) by solving delay-free Lyapunov
equation. As an example, let vec(X) = T−1u1, then we have

u1 = T vec(X)

=
((
In ⊗ (−L̃)T

)
+
(
− L̃T ⊗ In

))
vec(X)

= vec(−L̃TX) + vec(−XL̃),

which is equivalent to

L̃TX +XL̃+ U1 = 0, (55)

where the above equation is delay-free Lyapunov equation.
Hence, time-complexity of calculating P−1u is O(n3). We
solve Lyapunov equation through MATLAB’s lyap function.
Since in most of the iterations, matrix U1 in equation (55) is
not symmetric, MATLAB calls SLICOT subroutines to solve it
as a Sylvester equation. These subroutines, use a Hessenberg-
Schur method to solve the Sylvester equations [40]. In order
to compute z2, we use GMRES algorithm with M + N as
preconditioner.
As a result, time complexity of each iteration of GMRES
involves solving a delay-free Lyapunov equation with time
complexity of O(n3). More details about GMRES algorithm
are provided in [38].
In order to complete the computation of ρ(L, τ), we should

multiply zT
1 by z2 in O(n4). However, it can be done more

efficiently if we first multiply D by z2 by using (54) in O(n3)
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and then multiply
[
vec(BBT)T 01×n2

]
by D z2 in O(n2).

Table I shows the number of GMRES iterations that is
necessary to find the performance with relative residue 10−14.
Our observation is that the number of iterations is independent
of size of the network, i.e., n. However, as the ratio of time-
delay to time-delay margin increases, the number of iterations
increase as well. Figure 4 depicts required time to evaluate
performance of a network with different sizes and different
amounts of time-delay. As one can expect, in the Figure 4
as size of the network increases, solving the delay Lyapunov
equation becomes more time consuming. In addition, cost
of performance computation increases with growth of the
ratio τ

τ∗ . This observation is compatible with relation between
number of iterations and the ratio τ

τ∗ given in table I.

B. Gradient Computation
As it was mentioned earlier, another time consuming part in

each iteration of optimization is gradient computation. Here we
compute gradient of the objective function without computing
the directional derivatives. As an example, derivative of the
objective function with respect to weight of edge (i, j) is

ρ(L, τ)

∂wij
=

[
vec(BBT)

0n2×1

]T [ ∂D
∂wij

(MD+NN)−1

−D(MD+NN)−1
( ∂M
∂wij

D+M
∂D

∂wij

+
∂N

∂wij
N+N

∂N

∂wij

)
(MD+NN)−1

] [− vecMn

0n2×1

]
.

(56)

Let us define δ1, δ2, δ3, δ4, and δ5 as

δ1 =
[
vec(BBT)T 01×n2

] ∂D
∂wij

z2,

δ2 =zT
1 (MD+NN)−1 ∂M

∂wij
D z2,

δ3 =zT
1 (MD+NN)−1M

∂D

∂wij
z2,

δ4 =zT
1 (MD+NN)−1 ∂N

∂wij
N z2,

δ5 =zT
1 (MD+NN)−1N

∂N

∂wij
z2.

(57)

Therefore we get the following equivalent relation for (56)
∂ρ(L, τ)

∂wij
= δ1 − δ2 − δ3 − δ4 − δ5. (58)

Furthermore, ∂L
T

∂wij
=
(
∂L
∂wij

)T

. Derivative of Laplacian matrix
with respect to wij is[

∂L

∂wij

]
kl

=


1, if k = l = i,

−1, if k = i, l = j,

0, otherwise,

Hence, ∂L
∂wij

can be represented compactly as ei(ei − ej)
T.

Moreover, ∂N
∂wij

and ∂D
∂wij

are given as

∂N

∂wij
=
∂V1

∂wij
+

∂V2

∂wij
, (59)

∂D

∂wij
=− ∂V1

∂wij
+

∂V2

∂wij
, (60)

where ∂V1

∂wij
and ∂V2

∂wij
are

∂V1

∂wij
=

7∑
i=1

β2i−1τ
2i−1

2i−2∑
j=0

Aj ∂A

∂wij
A2i−2−j ,

∂V2

∂wij
=

6∑
i=1

β2iτ
2i

2i−1∑
j=0

Aj ∂A

∂wij
A2i−1−j ,

(61)

under the convention that A0 = I2n2 . Consider two augmented
vectors u ∈ R2n2

and ũ ∈ R2n2

as in (53). We have

ũT ∂M

∂wij
u,=[ŨT

1 U2]ji − [ŨT
1 U2]ii, (62)

ũT ∂N

∂wij
u,=[U1Ũ

T
1 ]ij − [U1Ũ

T
1 ]ii, (63)

ũT ∂A

∂wij
u =[U1Ũ

T
2 ]ii − [U1Ũ

T
2 ]ij

+[ŨT
1 U2]ji − [ŨT

1 U2]ii.

(64)

At this point we have all the tools that we require to calculate
∂ρ(L,τ)
∂wij

as in (58). Let zT
3 equals zT

1 (MD+NN)−1. From
(57) we infer δ2, δ3, δ4 and δ5 include zT

3 . The procedure of
finding z3 is similar to what we have already explained for
finding z2 in performance calculation. To this end, the follow-
ing equation should be solved for z3 by GMRES algorithm

(MD+NN)Tz3 = z1, (65)

and to speed-up the convergence rate, we take (M+N)T as a
right preconditioner. Finding product of (MT +NT)−1 and a
vector can be done with O(n3) arithmetic operations similar
to product of (M + N)−1 and a vector that we explained for
computing performance. Moreover, by the similar technique as
in (54) matrix-vector multiplication for (MD+NN)T needs
O(n3) operations. In other words for a vector u as in (53),
cost of computing MTu, NTu and ATu is O(n3). After
solving equation (65) and finding zT

3 = zT
1 (MD+NN)−1

computation of δ1 and δ3 take the form of (64). Similarly,
by (59) and (61), computation of δ5 takes the form of (64),
as well. Moreover, computation of δ2 and δ4 end up with
an equation similar to (62) and (63), respectively. Thus after
computing z2 and z3 the rest of the steps requires O(n3)
operations.

C. Example

We run the optimization problem for randomly generated
graphs with a number of nodes in range of 50 to 200. Figure
5 depicts the ratio of the result of the optimization (solution
of of the problem (51)) to ρ∗n in (41). For each data point
in the figure, an Erdős-Renyi random graph is considered as
the topology. As the density of the graphs increases, this ratio
decreases, since we have more variables (edge weights) to
adjust through the optimization process.

VII. CONCLUSION

The H2 performance analysis of a class of time-delay
directed consensus networks is considered. When network
Laplacian is normal, we obtain a closed-form expression for
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20% density

45% density

70% density

95% density

Fig. 5. Ratio of the optimal network performance provided by solving the
optimization problem (51) to minimum of performance of networks with
normal Laplacian matrix, given by (41). For each data point, an Erdős-Renyi
random graph G(n, p) is generated, in which p is approximately the density.
We observe that the best achievable performance is improved by increasing
the density.

the H2-norm, which depends on Laplacian eigenvalues and
time-delay. We show that network performance deteriorates
when time-delay increase and its behavior is non-monotone
in terms of feedback gains. We present a design algorithms
that can tune feedback gains in a network (with a fixed
topology) with several thousands state variable to achieve
optimal performance.
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